现有的长尾分类(LT)方法仅着眼于解决阶级的失衡,即头部类别的样本多于尾巴类,但忽略了属性的不平衡。实际上,即使班级平衡,由于各种属性,每个类中的样本仍然可能会长时间尾。请注意,后者在根本上比前者更加普遍和具有挑战性,因为属性不仅是大多数数据集的隐含,而且在组合上也具有复杂性,因此平衡的昂贵。因此,我们引入了一个新的研究问题:广义的长尾分类(GLT),共同考虑两种失衡。通过“广义”,我们的意思是,GLT方法自然应该解决传统的LT,但反之亦然。毫不奇怪,我们发现大多数class LT方法在我们提出的两个基准中退化:Imagenet-GLT和Mscoco-GLT。我们认为这是因为他们过分强调了班级分布的调整,同时忽略了学习属性不变的功能。为此,我们提出了一种不变特征学习(IFL)方法,作为GLT的第一个强基线。 IFL首先从不完美的预测中发现具有不同类内分布的环境,然后在其中学习不变的功能。有希望的是,作为改进的功能主链,IFL提高了所有LT阵容:一个/两阶段的重新平衡,增强和合奏。代码和基准可在GitHub上获得:https://github.com/kaihuatang/generalized-long-tailed-benchmarks.pytorch
translated by 谷歌翻译
常规的去命名方法依赖于所有样品都是独立且分布相同的假设,因此最终的分类器虽然受到噪声的干扰,但仍然可以轻松地将噪声识别为训练分布的异常值。但是,在不可避免地长尾巴的大规模数据中,该假设是不现实的。这种不平衡的训练数据使分类器对尾巴类别的歧视性较小,而尾巴类别的差异化现在变成了“硬”的噪声 - 它们几乎与干净的尾巴样品一样离群值。我们将这一新挑战介绍为嘈杂的长尾分类(NLT)。毫不奇怪,我们发现大多数拖延方法无法识别出硬噪声,从而导致三个提出的NLT基准测试的性能大幅下降:Imagenet-NLT,Animal10-NLT和Food101-NLT。为此,我们设计了一个迭代嘈杂的学习框架,称为“难以容易”(H2E)。我们的引导理念是首先学习一个分类器作为噪声标识符不变的类和上下文分布变化,从而将“硬”噪声减少到“ Easy”的噪声,其删除进一步改善了不变性。实验结果表明,我们的H2E胜过最先进的方法及其在长尾设置上的消融,同时在传统平衡设置上保持稳定的性能。数据集和代码可从https://github.com/yxymessi/h2e-framework获得
translated by 谷歌翻译
As the class size grows, maintaining a balanced dataset across many classes is challenging because the data are long-tailed in nature; it is even impossible when the sample-of-interest co-exists with each other in one collectable unit, e.g., multiple visual instances in one image. Therefore, long-tailed classification is the key to deep learning at scale. However, existing methods are mainly based on reweighting/re-sampling heuristics that lack a fundamental theory. In this paper, we establish a causal inference framework, which not only unravels the whys of previous methods, but also derives a new principled solution. Specifically, our theory shows that the SGD momentum is essentially a confounder in long-tailed classification. On one hand, it has a harmful causal effect that misleads the tail prediction biased towards the head. On the other hand, its induced mediation also benefits the representation learning and head prediction. Our framework elegantly disentangles the paradoxical effects of the momentum, by pursuing the direct causal effect caused by an input sample. In particular, we use causal intervention in training, and counterfactual reasoning in inference, to remove the "bad" while keep the "good". We achieve new state-of-the-arts on three long-tailed visual recognition benchmarks 1 : Long-tailed CIFAR-10/-100, ImageNet-LT for image classification and LVIS for instance segmentation.
translated by 谷歌翻译
少数族裔类的数据增强是长尾识别的有效策略,因此开发了大量方法。尽管这些方法都确保了样本数量的平衡,但是增强样品的质量并不总是令人满意的,识别且容易出现过度拟合,缺乏多样性,语义漂移等问题。对于这些问题,我们建议班级感知的大学启发了重新平衡学习(CAUIRR),以进行长尾识别,这使Universum具有班级感知的能力,可以从样本数量和质量中重新平衡个人少数族裔。特别是,我们从理论上证明,凯尔学到的分类器与从贝叶斯的角度从平衡状态下学到的那些人一致。此外,我们进一步开发了一种高阶混合方法,该方法可以自动生成类感知的Universum(CAU)数据,而无需诉诸任何外部数据。与传统的大学不同,此类产生的全球还考虑了域的相似性,阶级可分离性和样本多样性。基准数据集的广泛实验证明了我们方法的令人惊讶的优势,尤其是与最先进的方法相比,少数族裔类别的TOP1准确性提高了1.9%6%。
translated by 谷歌翻译
The long-tail distribution of the visual world poses great challenges for deep learning based classification models on how to handle the class imbalance problem. Existing solutions usually involve class-balancing strategies, e.g. by loss re-weighting, data re-sampling, or transfer learning from head-to tail-classes, but most of them adhere to the scheme of jointly learning representations and classifiers. In this work, we decouple the learning procedure into representation learning and classification, and systematically explore how different balancing strategies affect them for long-tailed recognition. The findings are surprising: (1) data imbalance might not be an issue in learning high-quality representations; (2) with representations learned with the simplest instance-balanced (natural) sampling, it is also possible to achieve strong long-tailed recognition ability by adjusting only the classifier. We conduct extensive experiments and set new state-of-the-art performance on common long-tailed benchmarks like ImageNet-LT, Places-LT and iNaturalist, showing that it is possible to outperform carefully designed losses, sampling strategies, even complex modules with memory, by using a straightforward approach that decouples representation and classification. Our code is available at https://github.com/facebookresearch/classifier-balancing.
translated by 谷歌翻译
现实世界数据普遍面对严重的类别 - 不平衡问题,并且展示了长尾分布,即,大多数标签与有限的情况有关。由此类数据集监督的NA \“IVE模型更愿意占主导地位标签,遇到严重的普遍化挑战并变得不佳。我们从先前的角度提出了两种新的方法,以减轻这种困境。首先,我们推导了一个以平衡为导向的数据增强命名均匀的混合物(Unimix)促进长尾情景中的混合,采用先进的混合因子和采样器,支持少数民族。第二,受贝叶斯理论的动机,我们弄清了贝叶斯偏见(北美),是由此引起的固有偏见先前的不一致,并将其补偿为对标准交叉熵损失的修改。我们进一步证明了所提出的方法理论上和经验地确保分类校准。广泛的实验验证我们的策略是否有助于更好校准的模型,以及他们的策略组合在CIFAR-LT,ImageNet-LT和Inattations 2018上实现最先进的性能。
translated by 谷歌翻译
许多现实世界的识别问题都有不平衡或长尾标签的分布。这些分布使表示形式学习更具挑战性,因为对尾巴类别的概括有限。如果测试分布与训练分布有所不同,例如统一与长尾,需要解决分配转移的问题。为此,最近的作品通过贝叶斯定理的启发,使用边缘修改扩展了SoftMax跨凝结。在本文中,我们通过专家的平衡产品(Balpoe)概括了几种方法,该方法结合了一个具有不同测试时间目标分布的模型家庭,以解决数据中的不平衡。拟议的专家在一个阶段进行培训,无论是共同还是独立的,并无缝融合到Balpoe中。我们表明,Balpoe是Fisher的一致性,可以最大程度地减少均衡误差并执行广泛的实验以验证我们的方法的有效性。最后,我们研究了在这种情况下混合的效果,发现正则化是学习校准专家的关键要素。我们的实验表明,正则化的BALPOE在测试准确性和校准指标上的表现非常出色,从而导致CIFAR-100-LT,Imagenet-LT和Inaturalist-2018数据集的最新结果。该代码将在纸质接受后公开提供。
translated by 谷歌翻译
我们在现有的长尾分类方法中解决了被忽视的无偏见:我们发现它们的整体改善主要归因于尾部过度的偏置偏好,因为假设测试分配是平衡的;但是,当测试与长尾训练数据一样不平衡 - 让测试尊重ZIPF的自然定律 - 尾巴偏差不再有益,因为它伤害了大多数人。在本文中,我们提出了跨域经验风险最小化(XIM)来训练一个非偏见模型,以实现对两个测试分布的强大性能,经验证明Xerm通过学习更好的特征表示而不是头部与头部来改善分类。游戏。基于因果关系,我们进一步理论上解释了Xerm实现了非偏见的原因:通过调整不平衡域和平衡但不合形的结构域的经验风险来消除由域选择引起的偏差。代码可在https://github.com/beierzhu/xerm获得。
translated by 谷歌翻译
Model bias triggered by long-tailed data has been widely studied. However, measure based on the number of samples cannot explicate three phenomena simultaneously: (1) Given enough data, the classification performance gain is marginal with additional samples. (2) Classification performance decays precipitously as the number of training samples decreases when there is insufficient data. (3) Model trained on sample-balanced datasets still has different biases for different classes. In this work, we define and quantify the semantic scale of classes, which is used to measure the feature diversity of classes. It is exciting to find experimentally that there is a marginal effect of semantic scale, which perfectly describes the first two phenomena. Further, the quantitative measurement of semantic scale imbalance is proposed, which can accurately reflect model bias on multiple datasets, even on sample-balanced data, revealing a novel perspective for the study of class imbalance. Due to the prevalence of semantic scale imbalance, we propose semantic-scale-balanced learning, including a general loss improvement scheme and a dynamic re-weighting training framework that overcomes the challenge of calculating semantic scales in real-time during iterations. Comprehensive experiments show that dynamic semantic-scale-balanced learning consistently enables the model to perform superiorly on large-scale long-tailed and non-long-tailed natural and medical datasets, which is a good starting point for mitigating the prevalent but unnoticed model bias.
translated by 谷歌翻译
The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR) a massive challenging task. Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off-the-shelf pretrain weight of ViTs always leads to unfair comparisons. In this paper, we systematically investigate the ViTs' performance in LTR and propose LiVT to train ViTs from scratch only with LT data. With the observation that ViTs suffer more severe LTR problems, we conduct Masked Generative Pretraining (MGP) to learn generalized features. With ample and solid evidence, we show that MGP is more robust than supervised manners. In addition, Binary Cross Entropy (BCE) loss, which shows conspicuous performance with ViTs, encounters predicaments in LTR. We further propose the balanced BCE to ameliorate it with strong theoretical groundings. Specially, we derive the unbiased extension of Sigmoid and compensate extra logit margins to deploy it. Our Bal-BCE contributes to the quick convergence of ViTs in just a few epochs. Extensive experiments demonstrate that with MGP and Bal-BCE, LiVT successfully trains ViTs well without any additional data and outperforms comparable state-of-the-art methods significantly, e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNaturalist 2018 without bells and whistles. Code is available at https://github.com/XuZhengzhuo/LiVT.
translated by 谷歌翻译
成像检查(例如胸部X射线照相)将产生一小部分常见发现和一组少数罕见的发现。虽然训练有素的放射科医生可以通过研究一些代表性的例子来学习罕见条件的视觉呈现,但是教机器从这种“长尾”分布中学习的情况更加困难,因为标准方法很容易偏向最常见的类别。在本文中,我们介绍了胸部X射线胸腔疾病特定领域的长尾学习问题的全面基准研究。我们专注于从自然分布的胸部X射线数据中学习,不仅优化了分类精度,不仅是常见的“头”类,而且还优化了罕见但至关重要的“尾巴”类。为此,我们引入了一个具有挑战性的新长尾X射线基准,以促进开发长尾学习方法进行医学图像分类。该基准由两个用于19-和20向胸部疾病分类的胸部X射线数据集组成,其中包含多达53,000的类别,只有7个标记的训练图像。我们在这种新的基准上评估了标准和最先进的长尾学习方法,分析这些方法的哪些方面对长尾医学图像分类最有益,并总结了对未来算法设计的见解。数据集,训练有素的模型和代码可在https://github.com/vita-group/longtailcxr上找到。
translated by 谷歌翻译
大多数现有的最新视频分类方法假设训练数据遵守统一的分布。但是,现实世界中的视频数据通常会表现出不平衡的长尾巴分布,从而导致模型偏见对头等阶层,并且在尾巴上的性能相对较低。虽然当前的长尾分类方法通常集中在图像分类上,但将其调整到视频数据并不是微不足道的扩展。我们提出了一种端到端的多专家分布校准方法,以基于两级分布信息来应对这些挑战。该方法共同考虑了每个类别中样品的分布(类内部分布)和各种数据(类间分布)的总体分布,以解决在长尾分布下数据不平衡数据的问题。通过对两级分布信息进行建模,该模型可以共同考虑头等阶层和尾部类别,并将知识从头等阶层显着转移,以提高尾部类别的性能。广泛的实验验证了我们的方法是否在长尾视频分类任务上实现了最先进的性能。
translated by 谷歌翻译
长尾图像识别对深度学习系统提出了巨大的挑战,因为多数(头)类别与少数族裔(TAIL)类之间的失衡严重偏斜了数据驱动的深度神经网络。以前的方法从数据分布,功能空间和模型设计等的角度来解决数据失衡。从以前省略的平衡标签空间的角度来看。为了减轻从头到尾的偏见,我们通过逐步调整标签空间并将头等阶层和尾部类别分开,动态构建平衡从不平衡到促进分类,提出简洁的范式。借助灵活的数据过滤和标签空间映射,我们可以轻松地将方法嵌入大多数分类模型,尤其是脱钩的训练方法。此外,我们发现头尾类别的可分离性在具有不同电感偏见的不同特征之间各不相同。因此,我们提出的模型还提供了一种功能评估方法,并为长尾特征学习铺平了道路。广泛的实验表明,我们的方法可以在广泛使用的基准上提高不同类型的最先进的性能。代码可在https://github.com/silicx/dlsa上找到。
translated by 谷歌翻译
在这项工作中,我们解决了长尾图像识别的具有挑战性的任务。以前的长尾识别方法通常集中于尾巴类别的数据增强或重新平衡策略,以在模型培训期间更加关注尾巴类。但是,由于尾巴类别的训练图像有限,尾部类图像的多样性仍受到限制,从而导致特征表现不佳。在这项工作中,我们假设头部和尾部类中的常见潜在特征可用于提供更好的功能表示。由此激励,我们引入了基于潜在类别的长尾识别(LCREG)方法。具体来说,我们建议学习一组在头和尾巴中共享的类不足的潜在特征。然后,我们通过将语义数据扩展应用于潜在特征,隐式地丰富了训练样本的多样性。对五个长尾图识别数据集进行的广泛实验表明,我们提出的LCREG能够显着超越先前的方法并实现最新结果。
translated by 谷歌翻译
分布式概括(OOD)都是关于对环境变化的学习不变性。如果每个类中的上下文分布均匀分布,则OOD将是微不足道的,因为由于基本原则,可以轻松地删除上下文:类是上下文不变的。但是,收集这种平衡的数据集是不切实际的。学习不平衡的数据使模型偏见对上下文,从而伤害了OOD。因此,OOD的关键是上下文平衡。我们认为,在先前工作中广泛采用的假设,可以直接从偏见的类预测中注释或估算上下文偏差,从而使上下文不完整甚至不正确。相比之下,我们指出了上述原则的另一面:上下文对于类也不变,这激励我们将类(已经被标记为已标记的)视为不同环境以解决上下文偏见(没有上下文标签)。我们通过最大程度地减少阶级样本相似性的对比损失,同时确保这种相似性在所有类别中不变,从而实现这一想法。在具有各种上下文偏见和域间隙的基准测试中,我们表明,配备了我们上下文估计的简单基于重新加权的分类器实现了最新的性能。我们在https://github.com/simpleshinobu/irmcon上提供了附录中的理论理由和代码。
translated by 谷歌翻译
长尾分布是现实世界中的常见现象。提取的大规模图像数据集不可避免地证明了长尾巴的属性和经过不平衡数据训练的模型可以为代表性过多的类别获得高性能,但为代表性不足的类别而苦苦挣扎,导致偏见的预测和绩效降低。为了应对这一挑战,我们提出了一种名为“逆图像频率”(IIF)的新型偏差方法。 IIF是卷积神经网络分类层中逻辑的乘法边缘调整转换。我们的方法比类似的作品实现了更强的性能,并且对于下游任务(例如长尾实例分割)特别有用,因为它会产生较少的假阳性检测。我们的广泛实验表明,IIF在许多长尾基准的基准(例如Imagenet-lt,cifar-lt,ploce-lt和lvis)上超过了最先进的现状,在Imagenet-lt上,Resnet50和26.2%达到了55.8%的TOP-1准确性LVIS上使用MaskRCNN分割AP。代码可在https://github.com/kostas1515/iif中找到
translated by 谷歌翻译
类别不平衡数据的问题在于,由于少数类别的数据缺乏数据,分类器的泛化性能劣化。在本文中,我们提出了一种新的少数民族过度采样方法,通过利用大多数类作为背景图像的丰富背景来增加多元化的少数民族样本。为了使少数民族样本多样化,我们的主要思想是将前景补丁从少数级别粘贴到来自具有富裕环境的多数类的背景图像。我们的方法很简单,可以轻松地与现有的长尾识别方法结合。我们通过广泛的实验和消融研究证明了提出的过采样方法的有效性。如果没有任何架构更改或复杂的算法,我们的方法在各种长尾分类基准上实现了最先进的性能。我们的代码将在链接上公开提供。
translated by 谷歌翻译
旨在从长尾数据培训类平衡模型的现有长尾识别方法,通常假设将在均匀的测试类分布上进行评估模型。然而,实际的测试类分布通常违反了这种假设(例如,长尾甚至是长尾的),这将导致现有的方法在现实世界中失败。在这项工作中,我们研究了一个更实用的任务设置,称为测试不稳定的长尾识别,其中训练类分布在测试类分布未知时长尾,可以任意偏斜。除了类别不平衡的问题外,这项任务造成了另一个挑战:培训和测试样本之间的班级分布转移是未识别的。为了处理这项任务,我们提出了一种新的方法,称为测试时间聚合各种专家,提供了两种解决方案策略:(1)一种新的技能 - 多样化专家学习策略,将各种专家培训从单一的处理不同的类分布时颁发不同的专家。长尾训练分配; (2)一种新的测试时间专家聚合策略,利用自我监督来汇总多个专家来处理各种未知的测试分布。理论上我们表明我们的方法具有模拟测试类分布的可提供能力。广泛的实验验证了我们的方法在香草和测试不可知的长尾识别上实现了新的最先进的性能,其中只有三个专家足以处理任意变化的测试级分布。代码可在https://github.com/vanint/tade-agnosticlt获得。
translated by 谷歌翻译
与其他类别(称为少数族裔或尾巴类)相比,很少的类或类别(称为多数或头等类别的类别)具有更高的数据样本数量,在现实世界中,长尾数据集经常遇到。在此类数据集上培训深层神经网络会给质量级别带来偏见。到目前为止,研究人员提出了多种加权损失和数据重新采样技术,以减少偏见。但是,大多数此类技术都认为,尾巴类始终是最难学习的类,因此需要更多的重量或注意力。在这里,我们认为该假设可能并不总是成立的。因此,我们提出了一种新颖的方法,可以在模型的训练阶段动态测量每个类别的瞬时难度。此外,我们使用每个班级的难度度量来设计一种新型的加权损失技术,称为“基于阶级难度的加权(CDB-W)损失”和一种新型的数据采样技术,称为“基于类别难度的采样)(CDB-S )'。为了验证CDB方法的广泛可用性,我们对多个任务进行了广泛的实验,例如图像分类,对象检测,实例分割和视频操作分类。结果验证了CDB-W损失和CDB-S可以在许多类似于现实世界中用例的类别不平衡数据集(例如Imagenet-LT,LVIS和EGTEA)上实现最先进的结果。
translated by 谷歌翻译
现实世界数据通常存在长尾分布。对不平衡数据的培训倾向于呈现神经网络在头部上表现良好,而尾部课程则更加差。尾班的培训实例的严重稀疏性是主要挑战,这导致培训期间的偏见分配估计。丰富的努力已经致力于改善挑战,包括数据重新采样和综合尾班的新培训实例。然而,没有先前的研究已经利用了从头课程转移到尾班的可转让知识,以校准尾舱的分布。在本文中,我们假设可以通过类似的头部级别来丰富尾部类,并提出一种名为标签感知分布校准Ladc的新型分布校准方法。 Ladc从相关的头部课程转移统计数据以推断尾部课程的分布。从校准分布的采样进一步促进重新平衡分类器。图像和文本的实验和文本长尾数据集表明,LADC显着优于现有方法。可视化还显示LADC提供更准确的分布估计。
translated by 谷歌翻译