In real teaching scenarios, an excellent teacher always teaches what he (or she) is good at but the student is not. This method gives the student the best assistance in making up for his (or her) weaknesses and becoming a good one overall. Enlightened by this, we introduce the approach to the knowledge distillation framework and propose a data-based distillation method named ``Teaching what you Should Teach (TST)''. To be specific, TST contains a neural network-based data augmentation module with the priori bias, which can assist in finding what the teacher is good at while the student are not by learning magnitudes and probabilities to generate suitable samples. By training the data augmentation module and the generalized distillation paradigm in turn, a student model that has excellent generalization ability can be created. To verify the effectiveness of TST, we conducted extensive comparative experiments on object recognition (CIFAR-100 and ImageNet-1k), detection (MS-COCO), and segmentation (Cityscapes) tasks. As experimentally demonstrated, TST achieves state-of-the-art performance on almost all teacher-student pairs. Furthermore, we conduct intriguing studies of TST, including how to solve the performance degradation caused by the stronger teacher and what magnitudes and probabilities are needed for the distillation framework.
translated by 谷歌翻译
Most existing distillation methods ignore the flexible role of the temperature in the loss function and fix it as a hyper-parameter that can be decided by an inefficient grid search. In general, the temperature controls the discrepancy between two distributions and can faithfully determine the difficulty level of the distillation task. Keeping a constant temperature, i.e., a fixed level of task difficulty, is usually sub-optimal for a growing student during its progressive learning stages. In this paper, we propose a simple curriculum-based technique, termed Curriculum Temperature for Knowledge Distillation (CTKD), which controls the task difficulty level during the student's learning career through a dynamic and learnable temperature. Specifically, following an easy-to-hard curriculum, we gradually increase the distillation loss w.r.t. the temperature, leading to increased distillation difficulty in an adversarial manner. As an easy-to-use plug-in technique, CTKD can be seamlessly integrated into existing knowledge distillation frameworks and brings general improvements at a negligible additional computation cost. Extensive experiments on CIFAR-100, ImageNet-2012, and MS-COCO demonstrate the effectiveness of our method. Our code is available at https://github.com/zhengli97/CTKD.
translated by 谷歌翻译
最先进的蒸馏方法主要基于中间层的深层特征,而logit蒸馏的重要性被极大地忽略了。为了提供研究逻辑蒸馏的新观点,我们将经典的KD损失重新分为两个部分,即目标类知识蒸馏(TCKD)和非目标类知识蒸馏(NCKD)。我们凭经验研究并证明了这两个部分的影响:TCKD转移有关训练样本“难度”的知识,而NCKD是Logit蒸馏起作用的重要原因。更重要的是,我们揭示了经典的KD损失是一种耦合的配方,该配方抑制了NCKD的有效性,并且(2)限制了平衡这两个部分的灵活性。为了解决这些问题,我们提出了脱钩的知识蒸馏(DKD),使TCKD和NCKD能够更有效,更灵活地发挥其角色。与基于功能的复杂方法相比,我们的DKD可相当甚至更好的结果,并且在CIFAR-100,ImageNet和MS-Coco数据集上具有更好的培训效率,用于图像分类和对象检测任务。本文证明了Logit蒸馏的巨大潜力,我们希望它对未来的研究有所帮助。该代码可从https://github.com/megvii-research/mdistiller获得。
translated by 谷歌翻译
知识蒸馏(KD)在将学习表征从大型模型(教师)转移到小型模型(学生)方面表现出非常有希望的能力。但是,随着学生和教师之间的容量差距变得更大,现有的KD方法无法获得更好的结果。我们的工作表明,“先验知识”对KD至关重要,尤其是在应用大型老师时。特别是,我们提出了动态的先验知识(DPK),该知识将教师特征的一部分作为特征蒸馏之前的先验知识。这意味着我们的方法还将教师的功能视为“输入”,而不仅仅是``目标''。此外,我们根据特征差距动态调整训练阶段的先验知识比率,从而引导学生在适当的困难中。为了评估所提出的方法,我们对两个图像分类基准(即CIFAR100和Imagenet)和一个对象检测基准(即MS Coco)进行了广泛的实验。结果表明,在不同的设置下,我们方法在性能方面具有优势。更重要的是,我们的DPK使学生模型的表现与教师模型的表现呈正相关,这意味着我们可以通过应用更大的教师进一步提高学生的准确性。我们的代码将公开用于可重复性。
translated by 谷歌翻译
Unlike existing knowledge distillation methods focus on the baseline settings, where the teacher models and training strategies are not that strong and competing as state-of-the-art approaches, this paper presents a method dubbed DIST to distill better from a stronger teacher. We empirically find that the discrepancy of predictions between the student and a stronger teacher may tend to be fairly severer. As a result, the exact match of predictions in KL divergence would disturb the training and make existing methods perform poorly. In this paper, we show that simply preserving the relations between the predictions of teacher and student would suffice, and propose a correlation-based loss to capture the intrinsic inter-class relations from the teacher explicitly. Besides, considering that different instances have different semantic similarities to each class, we also extend this relational match to the intra-class level. Our method is simple yet practical, and extensive experiments demonstrate that it adapts well to various architectures, model sizes and training strategies, and can achieve state-of-the-art performance consistently on image classification, object detection, and semantic segmentation tasks. Code is available at: https://github.com/hunto/DIST_KD .
translated by 谷歌翻译
Recently, large-scale pre-trained models have shown their advantages in many tasks. However, due to the huge computational complexity and storage requirements, it is challenging to apply the large-scale model to real scenes. A common solution is knowledge distillation which regards the large-scale model as a teacher model and helps to train a small student model to obtain a competitive performance. Cross-task Knowledge distillation expands the application scenarios of the large-scale pre-trained model. Existing knowledge distillation works focus on directly mimicking the final prediction or the intermediate layers of the teacher model, which represent the global-level characteristics and are task-specific. To alleviate the constraint of different label spaces, capturing invariant intrinsic local object characteristics (such as the shape characteristics of the leg and tail of the cattle and horse) plays a key role. Considering the complexity and variability of real scene tasks, we propose a Prototype-guided Cross-task Knowledge Distillation (ProC-KD) approach to transfer the intrinsic local-level object knowledge of a large-scale teacher network to various task scenarios. First, to better transfer the generalized knowledge in the teacher model in cross-task scenarios, we propose a prototype learning module to learn from the essential feature representation of objects in the teacher model. Secondly, for diverse downstream tasks, we propose a task-adaptive feature augmentation module to enhance the features of the student model with the learned generalization prototype features and guide the training of the student model to improve its generalization ability. The experimental results on various visual tasks demonstrate the effectiveness of our approach for large-scale model cross-task knowledge distillation scenes.
translated by 谷歌翻译
知识蒸馏已成功地应用于各种任务。当前的蒸馏算法通常通过模仿教师的产出来改善学生的表现。本文表明,教师还可以通过指导学生的功能恢复来提高学生的代表权。从这个角度来看,我们提出了掩盖的生成蒸馏(MGD),这很简单:我们掩盖了学生功能的随机像素,并强迫它通过简单的块生成教师的完整功能。 MGD是一种真正的基于特征的蒸馏方法,可用于各种任务,包括图像分类,对象检测,语义分割和实例分割。我们在具有广泛数据集的不同模型上进行了实验,结果表明所有学生都取得了出色的改进。值得注意的是,我们将RESNET-18从69.90%提高到71.69%的Imagenet Top-1精度,带有Resnet-50骨架的视网膜从37.4到41.0界盒映射,基于Resnet-50的独奏从33.1到33.1至36.2 Mask Map和DeepLabV3, 18从73.20到76.02 miou。我们的代码可在https://github.com/yzd-v/mgd上找到。
translated by 谷歌翻译
知识蒸馏(KD)已广泛发展并增强了各种任务。经典的KD方法将KD损失添加到原始的跨熵(CE)损失中。我们尝试分解KD损失,以探索其与CE损失的关系。令人惊讶的是,我们发现它可以被视为CE损失和额外损失的组合,其形式与CE损失相同。但是,我们注意到额外的损失迫使学生学习教师绝对概率的相对可能性。此外,这两个概率的总和是不同的,因此很难优化。为了解决这个问题,我们修改了配方并提出分布式损失。此外,我们将教师的目标输出作为软目标,提出软损失。结合软损失和分布式损失,我们提出了新的KD损失(NKD)。此外,我们将学生的目标输出稳定,将其视为无需教师的培训的软目标,并提出了无教师的新KD损失(TF-NKD)。我们的方法在CIFAR-100和Imagenet上实现了最先进的性能。例如,以Resnet-34为老师,我们将Imagenet TOP-1的RESNET18的TOP-1精度从69.90%提高到71.96%。在没有教师的培训中,Mobilenet,Resnet-18和Swintransformer-tiny的培训占70.04%,70.76%和81.48%,分别比基线高0.83%,0.86%和0.30%。该代码可在https://github.com/yzd-v/cls_kd上找到。
translated by 谷歌翻译
与常规知识蒸馏(KD)不同,自我KD允许网络在没有额外网络的任何指导的情况下向自身学习知识。本文提议从图像混合物(Mixskd)执行自我KD,将这两种技术集成到统一的框架中。 Mixskd相互蒸馏以图形和概率分布在随机的原始图像和它们的混合图像之间以有意义的方式。因此,它通过对混合图像进行监督信号进行建模来指导网络学习跨图像知识。此外,我们通过汇总多阶段功能图来构建一个自学老师网络,以提供软标签以监督骨干分类器,从而进一步提高自我增强的功效。图像分类和转移学习到对象检测和语义分割的实验表明,混合物KD优于其他最先进的自我KD和数据增强方法。该代码可在https://github.com/winycg/self-kd-lib上找到。
translated by 谷歌翻译
知识蒸馏是通过知识转移模型压缩的有效稳定的方法。传统知识蒸馏(KD)是将来自大型和训练有素的教师网络的知识转移到小型学生网络,这是一种单向过程。最近,已经提出了深度相互学习(DML)来帮助学生网络协同和同时学习。然而,据我们所知,KD和DML从未在统一的框架中共同探索,以解决知识蒸馏问题。在本文中,我们调查教师模型在KD中支持更值得信赖的监督信号,而学生则在DML中捕获教师的类似行为。基于这些观察,我们首先建议将KD与DML联合在统一的框架中。此外,我们提出了一个半球知识蒸馏(SOKD)方法,有效提高了学生和教师的表现。在这种方法中,我们在DML中介绍了同伴教学培训时尚,以缓解学生的模仿困难,并利用KD训练有素的教师提供的监督信号。此外,我们还显示我们的框架可以轻松扩展到基于功能的蒸馏方法。在CiFAR-100和Imagenet数据集上的广泛实验证明了所提出的方法实现了最先进的性能。
translated by 谷歌翻译
知识蒸馏已成为获得紧凑又有效模型的重要方法。为实现这一目标,培训小型学生模型以利用大型训练有素的教师模型的知识。然而,由于教师和学生之间的能力差距,学生的表现很难达到老师的水平。关于这个问题,现有方法建议通过代理方式减少教师知识的难度。我们认为这些基于代理的方法忽视了教师的知识损失,这可能导致学生遇到容量瓶颈。在本文中,我们从新的角度来缓解能力差距问题,以避免知识损失的目的。我们建议通过对抗性协作学习建立一个更有力的学生,而不是牺牲教师的知识。为此,我们进一步提出了一种逆势协作知识蒸馏(ACKD)方法,有效提高了知识蒸馏的性能。具体来说,我们用多个辅助学习者构建学生模型。同时,我们设计了对抗的对抗性协作模块(ACM),引入注意机制和对抗的学习,以提高学生的能力。四个分类任务的广泛实验显示了拟议的Ackd的优越性。
translated by 谷歌翻译
无教师的在线知识蒸馏(KD)旨在培训多个学生模型的合奏,并彼此提炼知识。尽管现有的在线KD方法实现了理想的性能,但它们通常专注于阶级概率作为核心知识类型,而忽略了宝贵的特征代表性信息。我们为在线KD提供了一个相互的对比学习(MCL)框架。 MCL的核心思想是以在线方式进行对比分布的相互交互和对比度分布的转移。我们的MCL可以汇总跨网络嵌入信息,并最大化两个网络之间的相互信息的下限。这使每个网络能够从他人那里学习额外的对比知识,从而提供更好的特征表示形式,从而提高视觉识别任务的性能。除最后一层外,我们还将MCL扩展到辅助特征细化模块辅助的几个中间层。这进一步增强了在线KD的表示能力。关于图像分类和转移学习到视觉识别任务的实验表明,MCL可以针对最新的在线KD方法带来一致的性能提高。优势表明,MCL可以指导网络生成更好的特征表示。我们的代码可在https://github.com/winycg/mcl上公开获取。
translated by 谷歌翻译
在这项工作中,我们探讨了用于语义分割知识蒸馏的数据增强。为了避免过度适合教师网络中的噪音,大量培训示例对于知识蒸馏至关重要。 Imagelevel论证技术(例如翻转,翻译或旋转)在先前的知识蒸馏框架中广泛使用。受到功能空间上语义方向的最新进展的启发,我们建议在功能空间中包括以进行有效蒸馏的功能。具体而言,给定语义方向,可以在功能空间中为学生获得无限数量的增强。此外,分析表明,可以通过最大程度地减少增强损失的上限来同时优化这些增强。基于观察结果,开发了一种用于语义分割的知识蒸馏的新算法。对四个语义分割基准测试的广泛实验表明,所提出的方法可以提高当前知识蒸馏方法的性能而没有任何明显的开销。代码可在以下网址获得:https://github.com/jianlong-yuan/fakd。
translated by 谷歌翻译
Knowledge distillation (KD) has been actively studied for image classification tasks in deep learning, aiming to improve the performance of a student based on the knowledge from a teacher. However, applying KD in image regression with a scalar response variable has been rarely studied, and there exists no KD method applicable to both classification and regression tasks yet. Moreover, existing KD methods often require a practitioner to carefully select or adjust the teacher and student architectures, making these methods less flexible in practice. To address the above problems in a unified way, we propose a comprehensive KD framework based on cGANs, termed cGAN-KD. Fundamentally different from existing KD methods, cGAN-KD distills and transfers knowledge from a teacher model to a student model via cGAN-generated samples. This novel mechanism makes cGAN-KD suitable for both classification and regression tasks, compatible with other KD methods, and insensitive to the teacher and student architectures. An error bound for a student model trained in the cGAN-KD framework is derived in this work, providing a theory for why cGAN-KD is effective as well as guiding the practical implementation of cGAN-KD. Extensive experiments on CIFAR-100 and ImageNet-100 show that we can combine state of the art KD methods with the cGAN-KD framework to yield a new state of the art. Moreover, experiments on Steering Angle and UTKFace demonstrate the effectiveness of cGAN-KD in image regression tasks, where existing KD methods are inapplicable.
translated by 谷歌翻译
最近对知识蒸馏的研究发现,组合来自多位教师或学生的“黑暗知识”是有助于为培训创造更好的软目标,但以更大的计算和/或参数的成本为本。在这项工作中,我们通过在同一批量中传播和集合其他样本的知识来提供批处理知识合奏(烘焙)以生产用于锚固图像的精细柔软目标。具体地,对于每个感兴趣的样本,根据采样间的亲和力加权知识的传播,其与当前网络一起估计。然后可以集合传播的知识以形成更好的蒸馏靶。通过这种方式,我们的烘焙框架只通过单个网络跨多个样本进行在线知识。与现有知识合并方法相比,它需要最小的计算和内存开销。广泛的实验表明,轻质但有效的烘烤始终如一地提升多个数据集上各种架构的分类性能,例如,在想象网上的显着+ 0.7%的VINE-T的增益,只有+ 1.5%计算开销和零附加参数。烘焙不仅改善了Vanilla基线,还超越了所有基准的单一网络最先进。
translated by 谷歌翻译
知识蒸馏通常涉及如何有效地定义和转移知识从教师到学生。尽管最近的自我监督的对比知识取得了最佳表现,但迫使网络学习此类知识可能会损害对原始班级识别任务的表示。因此,我们采用替代性的自我监督的增强任务来指导网络学习原始识别任务和自我监督的辅助任务的共同分布。它被证明是一种更丰富的知识,可以提高表示能力而不会失去正常的分类能力。此外,以前的方法仅在最终层之间传递概率知识是不完整的。我们建议将几个辅助分类器附加到层次中间特征图中,以生成多样化的自我监督知识,并执行一对一的转移以彻底教授学生网络。我们的方法显着超过了先前的SOTA SSKD,CIFAR-100的平均改善为2.56 \%,并且在广泛使用的网络对上的Imagenet上有0.77 \%的提高。代码可在https://github.com/winycg/hsakd上找到。
translated by 谷歌翻译
Binary neural networks are the extreme case of network quantization, which has long been thought of as a potential edge machine learning solution. However, the significant accuracy gap to the full-precision counterparts restricts their creative potential for mobile applications. In this work, we revisit the potential of binary neural networks and focus on a compelling but unanswered problem: how can a binary neural network achieve the crucial accuracy level (e.g., 80%) on ILSVRC-2012 ImageNet? We achieve this goal by enhancing the optimization process from three complementary perspectives: (1) We design a novel binary architecture BNext based on a comprehensive study of binary architectures and their optimization process. (2) We propose a novel knowledge-distillation technique to alleviate the counter-intuitive overfitting problem observed when attempting to train extremely accurate binary models. (3) We analyze the data augmentation pipeline for binary networks and modernize it with up-to-date techniques from full-precision models. The evaluation results on ImageNet show that BNext, for the first time, pushes the binary model accuracy boundary to 80.57% and significantly outperforms all the existing binary networks. Code and trained models are available at: https://github.com/hpi-xnor/BNext.git.
translated by 谷歌翻译
在线知识蒸馏(OKD)通过相互利用教师和学生之间的差异来改善所涉及的模型。它们之间的差距上有几个关键的瓶颈 - 例如,为什么以及何时以及何时损害表现,尤其是对学生的表现?如何量化教师和学生之间的差距? - 接受了有限的正式研究。在本文中,我们提出了可切换的在线知识蒸馏(Switokd),以回答这些问题。 Switokd的核心思想不是专注于测试阶段的准确性差距,而是通过两种模式之间的切换策略来适应训练阶段的差距,即蒸馏差距 - 专家模式(暂停老师,同时暂停教师保持学生学习)和学习模式(重新启动老师)。为了拥有适当的蒸馏差距,我们进一步设计了一个自适应开关阈值,该阈值提供了有关何时切换到学习模式或专家模式的正式标准,从而改善了学生的表现。同时,老师从我们的自适应切换阈值中受益,并基本上与其他在线艺术保持同步。我们进一步将Switokd扩展到具有两个基础拓扑的多个网络。最后,广泛的实验和分析验证了Switokd在最新面前的分类的优点。我们的代码可在https://github.com/hfutqian/switokd上找到。
translated by 谷歌翻译
在线知识蒸馏会在所有学生模型之间进行知识转移,以减轻对预培训模型的依赖。但是,现有的在线方法在很大程度上依赖于预测分布并忽略了代表性知识的进一步探索。在本文中,我们提出了一种用于在线知识蒸馏的新颖的多尺度功能提取和融合方法(MFEF),其中包括三个关键组成部分:多尺度功能提取,双重注意和功能融合,以生成更有信息的特征图,以用于蒸馏。提出了在通道维度中的多尺度提取利用分界线和catenate,以提高特征图的多尺度表示能力。为了获得更准确的信息,我们设计了双重注意,以适应重要的渠道和空间区域。此外,我们通过功能融合来汇总并融合了以前的处理功能地图,以帮助培训学生模型。关于CIF AR-10,CIF AR-100和Cinic-10的广泛实验表明,MFEF转移了更有益的代表性知识,以蒸馏和胜过各种网络体系结构之间的替代方法
translated by 谷歌翻译
如何培训理想的老师进行知识蒸馏仍然是一个悬而未决的问题。人们普遍观察到,将教师最小化经验风险不一定会产生表现最好的学生,这表明教师网络培训中的共同实践与蒸馏目标之间的基本差异。为了填补这一空白,我们提出了一个新颖的以学生为导向的教师网络培训框架Soteacher,这是受到最新发现的启发,即学生的表现取决于教师近似培训样本的真正标签分布的能力。从理论上讲,我们确定(1)具有适当评分规则的经验风险最小化器,如果假设函数是局部lipschitz在训练样本周围连续的,则可以证明训练数据的真实标签分布; (2)当使用数据扩展进行培训时,需要一个额外的约束,使最小化器必须在同一培训输入的增强视图中产生一致的预测。鉴于我们的理论,Soteacher通过结合Lipschitz正则化和​​一致性正则化来翻新经验风险最小化。值得一提的是,Soteacher几乎适用于所有教师学生的建筑对,在教师的培训时不需要对学生的先验知识,并且几乎没有任何计算开销。两个基准数据集的实验证实,Soteacher可以在各种知识蒸馏算法和教师成对的各种知识蒸馏算法中显着和一致地提高学生的绩效。
translated by 谷歌翻译