机器学习(ML)模型需要经常在改变各种应用场景中更改数据集,包括数据估值和不确定量化。为了有效地重新培训模型,已经提出了线性近似方法,例如影响功能,以估计数据变化对模型参数的影响。但是,对于大型数据集的变化,这些方法变得不准确。在这项工作中,我们专注于凸起的学习问题,并提出了一般框架,用于学习使用神经网络进行不同训练集的优化模型参数。我们建议强制执行预测的模型参数,以通过正则化技术遵守最优性条件并保持效用,从而显着提高泛化。此外,我们严格地表征了神经网络的表现力,以近似凸起问题的优化器。经验结果展示了与最先进的准确高效的模型参数估计中提出的方法的优点。
translated by 谷歌翻译
本文研究了数据估值对嘈杂模型性能得分的鲁棒性。特别是,我们发现广泛使用的随机梯度下降的固有随机性会导致现有的数据值概念(例如,沙普利值和剩余错误),以在不同运行中产生不一致的数据值排名。为了应对这一挑战,我们首先提出一个正式的框架,在该框架中可以测量数据值概念的鲁棒性。我们表明,Banzhaf的价值是一个源自合作游戏理论文献的价值概念,它在所有半估计中实现了最大的鲁棒性 - 一类价值概念满足ML应用程序所带来的重要属性。我们提出了一种算法,以根据最大样本重用(MSR)原理有效地估计Banzhaf值。我们得出了Banzhaf值近似的下限样品复杂性,并表明我们的MSR算法的样品复杂性几乎与下限匹配。我们的评估表明,Banzhaf值的表现优于几个下游ML任务(例如使用加权样品学习和嘈杂的标签检测)的现有基于半半数的数据值概念。总体而言,我们的研究表明,当基础ML算法是随机的时,Banzhaf值是基于半杂志的数据值方案的有前途的替代方法,因为其计算优势和能力可靠地区分数据质量。
translated by 谷歌翻译
我们开发了一种新的原则性算法,用于估计培训数据点对深度学习模型的行为的贡献,例如它做出的特定预测。我们的算法估计了AME,该数量量衡量了将数据点添加到训练数据子集中的预期(平均)边际效应,并从给定的分布中采样。当从均匀分布中采样子集时,AME将还原为众所周知的Shapley值。我们的方法受因果推断和随机实验的启发:我们采样了训练数据的不同子集以训练多个子模型,并评估每个子模型的行为。然后,我们使用套索回归来基于子集组成共同估计每个数据点的AME。在稀疏假设($ k \ ll n $数据点具有较大的AME)下,我们的估计器仅需要$ O(k \ log n)$随机的子模型培训,从而改善了最佳先前的Shapley值估算器。
translated by 谷歌翻译
影响功能有效地估计了删除单个训练数据点对模型学习参数的影响。尽管影响估计值与线性模型的剩余重新进行了良好的重新对齐,但最近的作品表明,在神经网络中,这种比对通常很差。在这项工作中,我们通过将其分解为五个单独的术语来研究导致这种差异的特定因素。我们研究每个术语对各种架构和数据集的贡献,以及它们如何随网络宽度和培训时间等因素而变化。尽管实际影响函数估计值可能是非线性网络中保留对方的重新培训的差异,但我们表明它们通常是对不同对象的良好近似值,我们称其为近端Bregman响应函数(PBRF)。由于PBRF仍然可以用来回答许多激励影响功能的问题,例如识别有影响力或标记的示例,因此我们的结果表明,影响功能估计的当前算法比以前的错误分析所暗示的更有用的结果。
translated by 谷歌翻译
从机器学习模型中删除指定的培训数据子集的影响可能需要解决隐私,公平和数据质量等问题。删除子集后剩余数据从头开始对模型进行重新审查是有效但通常是不可行的,因为其计算费用。因此,在过去的几年中,已经看到了几种有效拆除的新方法,形成了“机器学习”领域,但是,到目前为止,出版的文献的许多方面都是不同的,缺乏共识。在本文中,我们总结并比较了七个最先进的机器学习算法,合并对现场中使用的核心概念的定义,调和不同的方法来评估算法,并讨论与在实践中应用机器相关的问题。
translated by 谷歌翻译
The behaviors of deep neural networks (DNNs) are notoriously resistant to human interpretations. In this paper, we propose Hypergradient Data Relevance Analysis, or HYDRA, which interprets the predictions made by DNNs as effects of their training data. Existing approaches generally estimate data contributions around the final model parameters and ignore how the training data shape the optimization trajectory. By unrolling the hypergradient of test loss w.r.t. the weights of training data, HYDRA assesses the contribution of training data toward test data points throughout the training trajectory. In order to accelerate computation, we remove the Hessian from the calculation and prove that, under moderate conditions, the approximation error is bounded. Corroborating this theoretical claim, empirical results indicate the error is indeed small. In addition, we quantitatively demonstrate that HYDRA outperforms influence functions in accurately estimating data contribution and detecting noisy data labels. The source code is available at https://github.com/cyyever/aaai_hydra_8686.
translated by 谷歌翻译
Data valuation, especially quantifying data value in algorithmic prediction and decision-making, is a fundamental problem in data trading scenarios. The most widely used method is to define the data Shapley and approximate it by means of the permutation sampling algorithm. To make up for the large estimation variance of the permutation sampling that hinders the development of the data marketplace, we propose a more robust data valuation method using stratified sampling, named variance reduced data Shapley (VRDS for short). We theoretically show how to stratify, how many samples are taken at each stratum, and the sample complexity analysis of VRDS. Finally, the effectiveness of VRDS is illustrated in different types of datasets and data removal applications.
translated by 谷歌翻译
最近的作品揭示了设计损失功能的基本范式,该损失功能与骨料损失不同。单个损失衡量样本上模型的质量,而总损失结合了每个训练样本的个体损失/分数。两者都有一个共同的过程,将一组单个值集合到单个数值值。排名顺序反映了设计损失时个人价值观之间最基本的关系。此外,可以将损失分解成单个术语的合奏的可分解性成为组织损失/得分的重要特性。这项调查对机器学习中的基于等级的可分解损失进行了系统的全面审查。具体而言,我们提供了损失功能的新分类法,遵循总损失和个人损失的观点。我们确定聚合器以形成此类损失,这是集合功能的示例。我们将基于等级的分解损失组织为八类。遵循这些类别,我们回顾有关基于等级的总损失和基于等级的个人损失的文献。我们描述了这些损失的一般公式,并将其与现有的研究主题联系起来。我们还建议未来的研究方向涵盖基于等级的可分解损失的未开发,剩余和新兴问题。
translated by 谷歌翻译
大量数据集上的培训机学习模型会产生大量的计算成本。为了减轻此类费用,已经持续努力开发数据有效的培训方法,这些方法可以仔细选择培训示例的子集,以概括为完整的培训数据。但是,现有方法在为在提取子集训练的模型的质量提供理论保证方面受到限制,并且在实践中的表现可能差。我们提出了Adacore,该方法利用数据的几何形状提取培训示例的子集以进行有效的机器学习。我们方法背后的关键思想是通过对Hessian的指数平均估计值动态近似损耗函数的曲率,以选择加权子集(核心),这些子集(核心)可提供与Hessian的完整梯度预处理的近似值。我们证明,对应用于Adacore选择的子集的各种一阶和二阶方法的收敛性有严格的保证。我们的广泛实验表明,与基准相比,ADACORE提取了质量更高的核心,并加快了对凸和非凸机学习模型的训练,例如逻辑回归和神经网络,超过2.9倍,超过4.5倍,而随机子集则超过4.5倍。 。
translated by 谷歌翻译
通过边界估计可以显着简化求解约束优化问题(COP),即提供成本函数的紧密边界。通过使用由已知边界的数据组成的数据以及COMPS提取的特征来馈送监督机器学习(ML)模型,可以训练模型以估计新COP实例的边界。在本文中,我们首先概述了来自问题实例的约束编程(CP)的ML的现有知识体系。其次,我们介绍了应用于支持CP解算器的工具的边界估计框架。在该框架内,讨论并评估了不同的ML模型,并评估其对边界估计的适用性,并避免避免求解器找到最佳解决方案的不可行估计的对策。第三,我们在七个警察中提出了一种实验研究,与不同的CP溶剂。我们的结果表明,可以仅限于这些警察的近似最佳边界。这些估计的边界将客观域大小减少60-88%,可以帮助求解器在搜索期间提前找到近乎最佳解决方案。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
Good models require good training data. For overparameterized deep models, the causal relationship between training data and model predictions is increasingly opaque and poorly understood. Influence analysis partially demystifies training's underlying interactions by quantifying the amount each training instance alters the final model. Measuring the training data's influence exactly can be provably hard in the worst case; this has led to the development and use of influence estimators, which only approximate the true influence. This paper provides the first comprehensive survey of training data influence analysis and estimation. We begin by formalizing the various, and in places orthogonal, definitions of training data influence. We then organize state-of-the-art influence analysis methods into a taxonomy; we describe each of these methods in detail and compare their underlying assumptions, asymptotic complexities, and overall strengths and weaknesses. Finally, we propose future research directions to make influence analysis more useful in practice as well as more theoretically and empirically sound. A curated, up-to-date list of resources related to influence analysis is available at https://github.com/ZaydH/influence_analysis_papers.
translated by 谷歌翻译
近年来,随着传感器和智能设备的广泛传播,物联网(IoT)系统的数据生成速度已大大增加。在物联网系统中,必须经常处理,转换和分析大量数据,以实现各种物联网服务和功能。机器学习(ML)方法已显示出其物联网数据分析的能力。但是,将ML模型应用于物联网数据分析任务仍然面临许多困难和挑战,特别是有效的模型选择,设计/调整和更新,这给经验丰富的数据科学家带来了巨大的需求。此外,物联网数据的动态性质可能引入概念漂移问题,从而导致模型性能降解。为了减少人类的努力,自动化机器学习(AUTOML)已成为一个流行的领域,旨在自动选择,构建,调整和更新机器学习模型,以在指定任务上实现最佳性能。在本文中,我们对Automl区域中模型选择,调整和更新过程中的现有方法进行了审查,以识别和总结将ML算法应用于IoT数据分析的每个步骤的最佳解决方案。为了证明我们的发现并帮助工业用户和研究人员更好地实施汽车方法,在这项工作中提出了将汽车应用于IoT异常检测问题的案例研究。最后,我们讨论并分类了该领域的挑战和研究方向。
translated by 谷歌翻译
监督学习的关键假设是培训和测试数据遵循相同的概率分布。然而,这种基本假设在实践中并不总是满足,例如,由于不断变化的环境,样本选择偏差,隐私问题或高标签成本。转移学习(TL)放松这种假设,并允许我们在分销班次下学习。通常依赖于重要性加权的经典TL方法 - 基于根据重要性(即测试过度训练密度比率)的训练损失培训预测器。然而,由于现实世界机器学习任务变得越来越复杂,高维和动态,探讨了新的新方法,以应对这些挑战最近。在本文中,在介绍基于重要性加权的TL基础之后,我们根据关节和动态重要预测估计审查最近的进步。此外,我们介绍一种因果机制转移方法,该方法包含T1中的因果结构。最后,我们讨论了TL研究的未来观点。
translated by 谷歌翻译
Accurate uncertainty quantification is a major challenge in deep learning, as neural networks can make overconfident errors and assign high confidence predictions to out-of-distribution (OOD) inputs. The most popular approaches to estimate predictive uncertainty in deep learning are methods that combine predictions from multiple neural networks, such as Bayesian neural networks (BNNs) and deep ensembles. However their practicality in real-time, industrial-scale applications are limited due to the high memory and computational cost. Furthermore, ensembles and BNNs do not necessarily fix all the issues with the underlying member networks. In this work, we study principled approaches to improve uncertainty property of a single network, based on a single, deterministic representation. By formalizing the uncertainty quantification as a minimax learning problem, we first identify distance awareness, i.e., the model's ability to quantify the distance of a testing example from the training data, as a necessary condition for a DNN to achieve high-quality (i.e., minimax optimal) uncertainty estimation. We then propose Spectral-normalized Neural Gaussian Process (SNGP), a simple method that improves the distance-awareness ability of modern DNNs with two simple changes: (1) applying spectral normalization to hidden weights to enforce bi-Lipschitz smoothness in representations and (2) replacing the last output layer with a Gaussian process layer. On a suite of vision and language understanding benchmarks, SNGP outperforms other single-model approaches in prediction, calibration and out-of-domain detection. Furthermore, SNGP provides complementary benefits to popular techniques such as deep ensembles and data augmentation, making it a simple and scalable building block for probabilistic deep learning. Code is open-sourced at https://github.com/google/uncertainty-baselines
translated by 谷歌翻译
最近的立法导致对机器学习的兴趣,即从预测模型中删除特定的培训样本,就好像它们在培训数据集中从未存在。由于损坏/对抗性数据或仅仅是用户的更新隐私要求,也可能需要进行学习。对于不需要培训的模型(K-NN),只需删除最近的原始样品即可有效。但是,这个想法不适合学习更丰富的表示的模型。由于模型维度D的趋势,最新的想法利用了基于优化的更新,因为损失函数的Hessian颠倒了。我们使用新的条件独立系数L-CODEC的变体来识别模型参数的子集,其语义重叠在单个样本级别上。我们的方法完全避免了将(可能)巨大矩阵倒置的必要性。通过利用马尔可夫毯子的选择,我们前提是l-codec也适合深度学习以及视觉中的其他应用。与替代方案相比,L-Codec在原本是不可行的设置中可以实现近似学习,包括用于面部识别的视觉模型,人重新识别和可能需要未经学习的样品进行排除的NLP模型。代码可以在https://github.com/vsingh-group/lcodec-deep-unlearning/
translated by 谷歌翻译
数十年来,计算机系统持有大量个人数据。一方面,这种数据丰度允许在人工智能(AI),尤其是机器学习(ML)模型中突破。另一方面,它可能威胁用户的隐私并削弱人类与人工智能之间的信任。最近的法规要求,可以从一般情况下从计算机系统中删除有关用户的私人信息,特别是根据要求从ML模型中删除(例如,“被遗忘的权利”)。虽然从后端数据库中删除数据应该很简单,但在AI上下文中,它不够,因为ML模型经常“记住”旧数据。现有的对抗攻击证明,我们可以从训练有素的模型中学习私人会员或培训数据的属性。这种现象要求采用新的范式,即机器学习,以使ML模型忘记了特定的数据。事实证明,由于缺乏共同的框架和资源,最近在机器上学习的工作无法完全解决问题。在本调查文件中,我们试图在其定义,场景,机制和应用中对机器进行彻底的研究。具体而言,作为最先进的研究的类别集合,我们希望为那些寻求机器未学习的入门及其各种表述,设计要求,删除请求,算法和用途的人提供广泛的参考。 ML申请。此外,我们希望概述范式中的关键发现和趋势,并突出显示尚未看到机器无法使用的新研究领域,但仍可以受益匪浅。我们希望这项调查为ML研究人员以及寻求创新隐私技术的研究人员提供宝贵的参考。我们的资源是在https://github.com/tamlhp/awesome-machine-unlearning上。
translated by 谷歌翻译
在文献中提出了各种各样的公平度量和可解释的人工智能(XAI)方法,以确定在关键现实环境中使用的机器学习模型中的偏差。但是,仅报告模型的偏差,或使用现有XAI技术生成解释不足以定位并最终减轻偏差源。在这项工作中,我们通过识别对这种行为的根本原因的训练数据的连贯子集来引入Gopher,该系统产生紧凑,可解释和意外模型行为的偏差或意外模型行为。具体而言,我们介绍了因果责任的概念,这些责任通过删除或更新其数据集来解决培训数据的程度可以解决偏差。建立在这一概念上,我们开发了一种有效的方法,用于生成解释模型偏差的顶级模式,该模型偏置利用来自ML社区的技术来实现因果责任,并使用修剪规则来管理模式的大搜索空间。我们的实验评估表明了Gopher在为识别和调试偏置来源产生可解释解释时的有效性。
translated by 谷歌翻译
有效的决策需要了解预测中固有的不确定性。在回归中,这种不确定性可以通过各种方法估算;然而,许多这些方法对调谐进行费力,产生过度自确性的不确定性间隔,或缺乏敏锐度(给予不精确的间隔)。我们通过提出一种通过定义具有两个不同损失功能的神经网络来捕获回归中的预测分布的新方法来解决这些挑战。具体地,一个网络近似于累积分布函数,第二网络近似于其逆。我们将此方法称为合作网络(CN)。理论分析表明,优化的固定点处于理想化的解决方案,并且该方法是渐近的与地面真理分布一致。凭经验,学习是简单且强大的。我们基准CN对两个合成和六个现实世界数据集的几种常见方法,包括预测来自电子健康记录的糖尿病患者的A1C值,其中不确定是至关重要的。在合成数据中,所提出的方法与基本上匹配地面真理。在真实世界数据集中,CN提高了许多性能度量的结果,包括对数似然估计,平均误差,覆盖估计和预测间隔宽度。
translated by 谷歌翻译
作为标签噪声,最受欢迎的分布变化之一,严重降低了深度神经网络的概括性能,具有嘈杂标签的强大训练正在成为现代深度学习中的重要任务。在本文中,我们提出了我们的框架,在子分类器(ALASCA)上创造了自适应标签平滑,该框架提供了具有理论保证和可忽略的其他计算的可靠特征提取器。首先,我们得出标签平滑(LS)会产生隐式Lipschitz正则化(LR)。此外,基于这些推导,我们将自适应LS(ALS)应用于子分类器架构上,以在中间层上的自适应LR的实际应用。我们对ALASCA进行了广泛的实验,并将其与以前的几个数据集上的噪声燃烧方法相结合,并显示我们的框架始终优于相应的基线。
translated by 谷歌翻译