大量数据集上的培训机学习模型会产生大量的计算成本。为了减轻此类费用,已经持续努力开发数据有效的培训方法,这些方法可以仔细选择培训示例的子集,以概括为完整的培训数据。但是,现有方法在为在提取子集训练的模型的质量提供理论保证方面受到限制,并且在实践中的表现可能差。我们提出了Adacore,该方法利用数据的几何形状提取培训示例的子集以进行有效的机器学习。我们方法背后的关键思想是通过对Hessian的指数平均估计值动态近似损耗函数的曲率,以选择加权子集(核心),这些子集(核心)可提供与Hessian的完整梯度预处理的近似值。我们证明,对应用于Adacore选择的子集的各种一阶和二阶方法的收敛性有严格的保证。我们的广泛实验表明,与基准相比,ADACORE提取了质量更高的核心,并加快了对凸和非凸机学习模型的训练,例如逻辑回归和神经网络,超过2.9倍,超过4.5倍,而随机子集则超过4.5倍。 。
translated by 谷歌翻译
在本文中,我们考虑了第一和二阶技术来解决机器学习中产生的连续优化问题。在一阶案例中,我们提出了一种从确定性或半确定性到随机二次正则化方法的转换框架。我们利用随机优化的两相性质提出了一种具有自适应采样和自适应步长的新型一阶算法。在二阶案例中,我们提出了一种新型随机阻尼L-BFGS方法,该方法可以在深度学习的高度非凸起背景下提高先前的算法。这两种算法都在众所周知的深度学习数据集上进行评估并表现出有希望的性能。
translated by 谷歌翻译
近期在应用于培训深度神经网络和数据分析中的其他优化问题中的非凸优化的优化算法的兴趣增加,我们概述了最近对非凸优化优化算法的全球性能保证的理论结果。我们从古典参数开始,显示一般非凸面问题无法在合理的时间内有效地解决。然后,我们提供了一个问题列表,可以通过利用问题的结构来有效地找到全球最小化器,因为可能的问题。处理非凸性的另一种方法是放宽目标,从找到全局最小,以找到静止点或局部最小值。对于该设置,我们首先为确定性一阶方法的收敛速率提出了已知结果,然后是最佳随机和随机梯度方案的一般理论分析,以及随机第一阶方法的概述。之后,我们讨论了非常一般的非凸面问题,例如最小化$ \ alpha $ -weakly-are-convex功能和满足Polyak-lojasiewicz条件的功能,这仍然允许获得一阶的理论融合保证方法。然后,我们考虑更高阶和零序/衍生物的方法及其收敛速率,以获得非凸优化问题。
translated by 谷歌翻译
深度学习在广泛的AI应用方面取得了有希望的结果。较大的数据集和模型一致地产生更好的性能。但是,我们一般花费更长的培训时间,以更多的计算和沟通。在本调查中,我们的目标是在模型精度和模型效率方面提供关于大规模深度学习优化的清晰草图。我们调查最常用于优化的算法,详细阐述了大批量培训中出现的泛化差距的可辩论主题,并审查了解决通信开销并减少内存足迹的SOTA策略。
translated by 谷歌翻译
We introduce SketchySGD, a stochastic quasi-Newton method that uses sketching to approximate the curvature of the loss function. Quasi-Newton methods are among the most effective algorithms in traditional optimization, where they converge much faster than first-order methods such as SGD. However, for contemporary deep learning, quasi-Newton methods are considered inferior to first-order methods like SGD and Adam owing to higher per-iteration complexity and fragility due to inexact gradients. SketchySGD circumvents these issues by a novel combination of subsampling, randomized low-rank approximation, and dynamic regularization. In the convex case, we show SketchySGD with a fixed stepsize converges to a small ball around the optimum at a faster rate than SGD for ill-conditioned problems. In the non-convex case, SketchySGD converges linearly under two additional assumptions, interpolation and the Polyak-Lojaciewicz condition, the latter of which holds with high probability for wide neural networks. Numerical experiments on image and tabular data demonstrate the improved reliability and speed of SketchySGD for deep learning, compared to standard optimizers such as SGD and Adam and existing quasi-Newton methods.
translated by 谷歌翻译
Deep Learning optimization involves minimizing a high-dimensional loss function in the weight space which is often perceived as difficult due to its inherent difficulties such as saddle points, local minima, ill-conditioning of the Hessian and limited compute resources. In this paper, we provide a comprehensive review of 12 standard optimization methods successfully used in deep learning research and a theoretical assessment of the difficulties in numerical optimization from the optimization literature.
translated by 谷歌翻译
我们研究了使用尖刺,现场依赖的随机矩阵理论研究迷你批次对深神经网络损失景观的影响。我们表明,批量黑森州的极值值的大小大于经验丰富的黑森州。我们还获得了类似的结果对Hessian的概括高斯牛顿矩阵近似。由于我们的定理,我们推导出作为批量大小的最大学习速率的分析表达式,为随机梯度下降(线性缩放)和自适应算法(例如ADAM(Square Root Scaling)提供了通知实际培训方案,例如光滑,非凸深神经网络。虽然随机梯度下降的线性缩放是在我们概括的更多限制性条件下导出的,但是适应优化者的平方根缩放规则是我们的知识,完全小说。随机二阶方法和自适应方法的百分比,我们得出了最小阻尼系数与学习率与批量尺寸的比率成比例。我们在Cifar-$ 100 $和ImageNet数据集上验证了我们的VGG / WimerEsnet架构上的索赔。根据我们对象检的调查,我们基于飞行学习率和动量学习者开发了一个随机兰齐齐竞争,这避免了对这些关键的超参数进行昂贵的多重评估的需求,并在预残留的情况下显示出良好的初步结果Cifar的architecure - $ 100 $。
translated by 谷歌翻译
本文评价用机器学习问题的数值优化方法。由于机器学习模型是高度参数化的,我们专注于适合高维优化的方法。我们在二次模型上构建直觉,以确定哪种方法适用于非凸优化,并在凸函数上开发用于这种方法的凸起函数。随着随机梯度下降和动量方法的这种理论基础,我们试图解释为什么机器学习领域通常使用的方法非常成功。除了解释成功的启发式之外,最后一章还提供了对更多理论方法的广泛审查,这在实践中并不像惯例。所以在某些情况下,这项工作试图回答这个问题:为什么默认值中包含的默认TensorFlow优化器?
translated by 谷歌翻译
从机器学习模型中删除指定的培训数据子集的影响可能需要解决隐私,公平和数据质量等问题。删除子集后剩余数据从头开始对模型进行重新审查是有效但通常是不可行的,因为其计算费用。因此,在过去的几年中,已经看到了几种有效拆除的新方法,形成了“机器学习”领域,但是,到目前为止,出版的文献的许多方面都是不同的,缺乏共识。在本文中,我们总结并比较了七个最先进的机器学习算法,合并对现场中使用的核心概念的定义,调和不同的方法来评估算法,并讨论与在实践中应用机器相关的问题。
translated by 谷歌翻译
随机梯度下降方法及其变体构成了实现机器学习问题的良好收敛速率的核心优化算法。尤其获得这些速率,特别是当这些算法用于手头的应用程序进行微调时。虽然这种调整过程可能需要大的计算成本,但最近的工作表明,通过线路搜索方法可以减少这些成本,可以迭代调整步骤。我们通过使用基于前向步骤模型建筑的新算法提出了一种替代方法来转移到随机线路搜索。该模型构建步骤包含了二阶信息,允许不仅调整步骤,还可以调整搜索方向。注意到深度学习模型参数分组(张量层),我们的方法构建其模型,并计算每个参数组的新步骤。这种新颖的对角化方法使所选择的步长自适应。我们提供收敛率分析,并通过实验表明,在大多数问题中,所提出的算法在大多数问题中实现更快的收敛性和更好的概括。此外,我们的实验表明,该方法的方法非常强大,因为它会收敛于各种初始步骤。
translated by 谷歌翻译
人工神经网络(ANN)训练景观的非凸起带来了固有的优化困难。虽然传统的背传播随机梯度下降(SGD)算法及其变体在某些情况下是有效的,但它们可以陷入杂散的局部最小值,并且对初始化和普通公共表敏感。最近的工作表明,随着Relu激活的ANN的培训可以重新重整为凸面计划,使希望能够全局优化可解释的ANN。然而,天真地解决凸训练制剂具有指数复杂性,甚至近似启发式需要立方时间。在这项工作中,我们描述了这种近似的质量,并开发了两个有效的算法,这些算法通过全球收敛保证培训。第一算法基于乘法器(ADMM)的交替方向方法。它解决了精确的凸形配方和近似对应物。实现线性全局收敛,并且初始几次迭代通常会产生具有高预测精度的解决方案。求解近似配方时,每次迭代时间复杂度是二次的。基于“采样凸面”理论的第二种算法更简单地实现。它解决了不受约束的凸形制剂,并收敛到大约全球最佳的分类器。当考虑对抗性培训时,ANN训练景观的非凸起加剧了。我们将稳健的凸优化理论应用于凸训练,开发凸起的凸起制剂,培训Anns对抗对抗投入。我们的分析明确地关注一个隐藏层完全连接的ANN,但可以扩展到更复杂的体系结构。
translated by 谷歌翻译
学习率调度程序已在培训深层神经网络中广泛采用。尽管它们的实际重要性,但其实践与理论分析之间存在差异。例如,即使是出于优化二次目标等简单问题,也不知道哪些SGD的时间表达到了最佳收敛性。在本文中,我们提出了本特征库,这是第一个可以在二次目标上获得最小值最佳收敛速率(最多达到常数)的最佳最佳收敛速率(最多达到常数),当时基础Hessian矩阵的特征值分布偏好。这种情况在实践中很普遍。实验结果表明,在CIFAR-10上的图像分类任务中,特征库可以显着超过阶跃衰减,尤其是当时期数量较小时。此外,该理论激发了两个简单的学习率调度程序,用于实用应用程序,可以近似特征。对于某些问题,提议的调度程序的最佳形状类似于余弦衰减的最佳形状,这阐明了余弦衰减在这种情况下的成功。对于其他情况,建议的调度程序优于余弦衰减。
translated by 谷歌翻译
鉴于Vanilla SGD的直接简单,本文在迷你批处理箱中提供了精细调整其阶梯尺寸。为了这样做,基于局部二次模型并仅使用嘈杂的梯度近似来估计曲率。一个人获得一种新的随机第一阶方法(步骤调谐的SGD),由二阶信息增强,这可以被视为古典Barzilai-Borwein方法的随机版本。我们的理论结果确保了几乎肯定的趋同集,我们提供了收敛速率。深度剩余网络培训的实验说明了我们方法的有利性质。对于我们在培训期间观察到的网络,突然下降的损失和中等阶段的测试精度的提高,产生比SGD,RMSPROP或ADAM更好的结果。
translated by 谷歌翻译
二阶优化器被认为具有加快神经网络训练的潜力,但是由于曲率矩阵的尺寸巨大,它们通常需要近似值才能计算。最成功的近似家庭是Kronecker因块状曲率估计值(KFAC)。在这里,我们结合了先前工作的工具,以评估确切的二阶更新和仔细消融以建立令人惊讶的结果:由于其近似值,KFAC与二阶更新无关,尤其是,它极大地胜过真实的第二阶段更新。订单更新。这一挑战广泛地相信,并立即提出了为什么KFAC表现如此出色的问题。为了回答这个问题,我们提出了强烈的证据,表明KFAC近似于一阶算法,该算法在神经元上执行梯度下降而不是权重。最后,我们表明,这种优化器通常会在计算成本和数据效率方面改善KFAC。
translated by 谷歌翻译
亚当是训练深神经网络的最具影响力的自适应随机算法之一,即使在简单的凸面设置中,它也被指出是不同的。许多尝试,例如降低自适应学习率,采用较大的批量大小,结合了时间去相关技术,寻求类似的替代物,\ textit {etc。},以促进Adam-type算法融合。与现有方法相反,我们引入了另一种易于检查的替代条件,这仅取决于基础学习率的参数和历史二阶时刻的组合,以确保通用ADAM的全球融合以解决大型融合。缩放非凸随机优化。这种观察结果以及这种足够的条件,对亚当的差异产生了更深刻的解释。另一方面,在实践中,无需任何理论保证,广泛使用了迷你ADAM和分布式ADAM。我们进一步分析了分布式系统中的批次大小或节点的数量如何影响亚当的收敛性,从理论上讲,这表明迷你批次和分布式亚当可以通过使用较大的迷你批量或较大的大小来线性地加速节点的数量。最后,我们应用了通用的Adam和Mini Batch Adam,具有足够条件来求解反例并在各种真实世界数据集上训练多个神经网络。实验结果完全符合我们的理论分析。
translated by 谷歌翻译
最近的立法导致对机器学习的兴趣,即从预测模型中删除特定的培训样本,就好像它们在培训数据集中从未存在。由于损坏/对抗性数据或仅仅是用户的更新隐私要求,也可能需要进行学习。对于不需要培训的模型(K-NN),只需删除最近的原始样品即可有效。但是,这个想法不适合学习更丰富的表示的模型。由于模型维度D的趋势,最新的想法利用了基于优化的更新,因为损失函数的Hessian颠倒了。我们使用新的条件独立系数L-CODEC的变体来识别模型参数的子集,其语义重叠在单个样本级别上。我们的方法完全避免了将(可能)巨大矩阵倒置的必要性。通过利用马尔可夫毯子的选择,我们前提是l-codec也适合深度学习以及视觉中的其他应用。与替代方案相比,L-Codec在原本是不可行的设置中可以实现近似学习,包括用于面部识别的视觉模型,人重新识别和可能需要未经学习的样品进行排除的NLP模型。代码可以在https://github.com/vsingh-group/lcodec-deep-unlearning/
translated by 谷歌翻译
最近,随机梯度下降(SGD)及其变体已成为机器学习(ML)问题大规模优化的主要方法。已经提出了各种策略来调整步骤尺寸,从自适应步骤大小到启发式方法,以更改每次迭代中的步骤大小。此外,动力已被广泛用于ML任务以加速训练过程。然而,我们对它们的理论理解存在差距。在这项工作中,我们开始通过为一些启发式优化方法提供正式保证并提出改进的算法来缩小这一差距。首先,我们分析了凸面和非凸口设置的Adagrad(延迟Adagrad)步骤大小的广义版本,这表明这些步骤尺寸允许算法自动适应随机梯度的噪声水平。我们首次显示延迟Adagrad的足够条件,以确保梯度几乎融合到零。此外,我们对延迟的Adagrad及其在非凸面设置中的动量变体进行了高概率分析。其次,我们用指数级和余弦的步骤分析了SGD,在经验上取得了成功,但缺乏理论支持。我们在平滑和非凸的设置中为它们提供了最初的收敛保证,有或没有polyak-{\ l} ojasiewicz(pl)条件。我们还显示了它们在PL条件下适应噪声的良好特性。第三,我们研究动量方法的最后迭代。我们证明了SGD的最后一个迭代的凸设置中的第一个下限,并以恒定的动量。此外,我们研究了一类跟随基于领先的领导者的动量算法,并随着动量和收缩的更新而增加。我们表明,他们的最后一个迭代具有最佳的收敛性,用于无约束的凸随机优化问题。
translated by 谷歌翻译
在本文中,我们研究了多块最小双重双层优化问题,其中上层是非凸线的最小值最小值目标,而下层级别是一个强烈的凸目标,并且有多个双重变量块和下层级别。问题。由于交织在一起的多块最小双重双重结构,每次迭代处的计算成本可能高高,尤其是在大量块中。为了应对这一挑战,我们提出了一种单循环随机随机算法,该算法需要在每次迭代时仅恒定数量的块进行更新。在对问题的一些温和假设下,我们建立了$ \ Mathcal {o}(1/\ Epsilon^4)$的样本复杂性,用于查找$ \ epsilon $ - 稳定点。这匹配了在一般无偏见的随机甲骨文模型下求解随机非convex优化的最佳复杂性。此外,我们在多任务深度AUC(ROC曲线下)最大化和多任务深度部分AUC最大化中提供了两种应用。实验结果验证了我们的理论,并证明了我们方法对数百个任务问题的有效性。
translated by 谷歌翻译
We show that parametric models trained by a stochastic gradient method (SGM) with few iterations have vanishing generalization error. We prove our results by arguing that SGM is algorithmically stable in the sense of Bousquet and Elisseeff. Our analysis only employs elementary tools from convex and continuous optimization. We derive stability bounds for both convex and non-convex optimization under standard Lipschitz and smoothness assumptions.Applying our results to the convex case, we provide new insights for why multiple epochs of stochastic gradient methods generalize well in practice. In the non-convex case, we give a new interpretation of common practices in neural networks, and formally show that popular techniques for training large deep models are indeed stability-promoting. Our findings conceptually underscore the importance of reducing training time beyond its obvious benefit.
translated by 谷歌翻译
优化通常是一个确定性问题,其中通过诸如梯度下降的一些迭代过程找到解决方案。然而,当培训神经网络时,由于样本的子集的随机选择,损耗函数会超过(迭代)时间。该随机化将优化问题转变为随机级别。我们建议将损失视为关于一些参考最优参考的嘈杂观察。这种对损失的解释使我们能够采用卡尔曼滤波作为优化器,因为其递归制剂旨在估计来自嘈杂测量的未知参数。此外,我们表明,用于未知参数的演进的卡尔曼滤波器动力学模型可用于捕获高级方法的梯度动态,如动量和亚当。我们称之为该随机优化方法考拉,对于Kalman优化算法而言,具有损失适应性的缺陷。考拉是一种易于实现,可扩展,高效的方法来训练神经网络。我们提供了通过实验的收敛分析和显示,它产生了与跨多个神经网络架构和机器学习任务的现有技术优化算法的现有状态的参数估计,例如计算机视觉和语言建模。
translated by 谷歌翻译