在本文中,我们提出了一个新颖的对象级映射系统,该系统可以同时在动态场景中分段,跟踪和重建对象。它可以通过对深度输入的重建和类别级别的重建来进一步预测并完成其完整的几何形状,其目的是完成对象几何形状会导致更好的对象重建和跟踪准确性。对于每个传入的RGB-D帧,我们执行实例分割以检测对象并在检测和现有对象图之间构建数据关联。将为每个无与伦比的检测创建一个新的对象映射。对于每个匹配的对象,我们使用几何残差和差分渲染残留物共同优化其姿势和潜在的几何表示形式,并完成其形状之前和完成的几何形状。与使用传统的体积映射或学习形状的先验方法相比,我们的方法显示出更好的跟踪和重建性能。我们通过定量和定性测试合成和现实世界序列来评估其有效性。
translated by 谷歌翻译
在本文中,我们提出了一个紧密耦合的视觉惯性对象级多效性动态大满贯系统。即使在极其动态的场景中,它也可以为摄像机姿势,速度,IMU偏见并构建一个密集的3D重建对象级映射图。我们的系统可以通过稳健的传感器和对象跟踪,可以强牢固地跟踪和重建任意对象的几何形状,其语义和运动的几何形状,其语义和运动的几何形状,并通过逐步融合相关的颜色,深度,语义和前景对象概率概率。此外,当对象在视野视野外丢失或移动时,我们的系统可以在重新观察时可靠地恢复其姿势。我们通过定量和定性测试现实世界数据序列来证明我们方法的鲁棒性和准确性。
translated by 谷歌翻译
In this work, we present a dense tracking and mapping system named Vox-Fusion, which seamlessly fuses neural implicit representations with traditional volumetric fusion methods. Our approach is inspired by the recently developed implicit mapping and positioning system and further extends the idea so that it can be freely applied to practical scenarios. Specifically, we leverage a voxel-based neural implicit surface representation to encode and optimize the scene inside each voxel. Furthermore, we adopt an octree-based structure to divide the scene and support dynamic expansion, enabling our system to track and map arbitrary scenes without knowing the environment like in previous works. Moreover, we proposed a high-performance multi-process framework to speed up the method, thus supporting some applications that require real-time performance. The evaluation results show that our methods can achieve better accuracy and completeness than previous methods. We also show that our Vox-Fusion can be used in augmented reality and virtual reality applications. Our source code is publicly available at https://github.com/zju3dv/Vox-Fusion.
translated by 谷歌翻译
对世界的丰富几何理解是许多机器人应用(例如计划和操纵)的重要组成部分。在本文中,我们提出了一个模块化管道,用于鉴于其类别的RGB-D图像的姿势和形状估计。我们方法的核心是一种生成形状模型,我们将其与新的初始化网络集成在一起,并具有可区分的渲染器,以从单个或多个视图中启用6D姿势和形状估计。我们研究了离散的签名距离字段作为有效的形状表示,以通过合成优化快速分析。我们的模块化框架可以实现多视图优化和可扩展性。我们证明了在合成和真实数据的几种实验中,我们的方法比最先进的方法的好处。我们在https://github.com/roym899/sdfest上开放我们的方法。
translated by 谷歌翻译
我们的方法从单个RGB-D观察中研究了以对象为中心的3D理解的复杂任务。由于这是一个不适的问题,因此现有的方法在3D形状和6D姿势和尺寸估计中都遭受了遮挡的复杂多对象方案的尺寸估计。我们提出了Shapo,这是一种联合多对象检测的方法,3D纹理重建,6D对象姿势和尺寸估计。 Shapo的关键是一条单杆管道,可回归形状,外观和构成潜在的代码以及每个对象实例的口罩,然后以稀疏到密集的方式进一步完善。首先学到了一种新颖的剖面形状和前景数据库,以将对象嵌入各自的形状和外观空间中。我们还提出了一个基于OCTREE的新颖的可区分优化步骤,使我们能够以分析的方式进一步改善对象形状,姿势和外观。我们新颖的联合隐式纹理对象表示使我们能够准确地识别和重建新颖的看不见的对象,而无需访问其3D网格。通过广泛的实验,我们表明我们的方法在模拟的室内场景上进行了训练,可以准确地回归现实世界中新颖物体的形状,外观和姿势,并以最小的微调。我们的方法显着超过了NOCS数据集上的所有基准,对于6D姿势估计,MAP的绝对改进为8%。项目页面:https://zubair-irshad.github.io/projects/shapo.html
translated by 谷歌翻译
本文提出了一种类别级别的6D对象姿势和形状估计方法IDAPS,其允许在类别中跟踪6D姿势并估计其3D形状。我们使用深度图像作为输入开发类别级别自动编码器网络,其中来自自动编码器编码的特征嵌入在类别中对象的姿势。自动编码器可用于粒子过滤器框架,以估计和跟踪类别中的对象的姿势。通过利用基于符号距离函数的隐式形状表示,我们构建延迟网络以估计给定对象的估计姿势的3D形状的潜在表示。然后,估计的姿势和形状可用于以迭代方式互相更新。我们的类别级别6D对象姿势和形状估计流水线仅需要2D检测和分段进行初始化。我们在公开的数据集中评估我们的方法,并展示其有效性。特别是,我们的方法在形状估计上实现了相对高的准确性。
translated by 谷歌翻译
获取房间规模场景的高质量3D重建对于即将到来的AR或VR应用是至关重要的。这些范围从混合现实应用程序进行电话会议,虚拟测量,虚拟房间刨,到机器人应用。虽然使用神经辐射场(NERF)的基于卷的视图合成方法显示有希望再现对象或场景的外观,但它们不会重建实际表面。基于密度的表面的体积表示在使用行进立方体提取表面时导致伪影,因为在优化期间,密度沿着射线累积,并且不在单个样本点处于隔离点。我们建议使用隐式函数(截短的签名距离函数)来代表表面来代表表面。我们展示了如何在NERF框架中纳入此表示,并将其扩展为使用来自商品RGB-D传感器的深度测量,例如Kinect。此外,我们提出了一种姿势和相机细化技术,可提高整体重建质量。相反,与集成NERF的深度前瞻性的并发工作,其专注于新型视图合成,我们的方法能够重建高质量的韵律3D重建。
translated by 谷歌翻译
我们向渲染和时间(4D)重建人类的渲染和时间(4D)重建的神经辐射场,通过稀疏的摄像机捕获或甚至来自单眼视频。我们的方法将思想与神经场景表示,新颖的综合合成和隐式统计几何人称的人类表示相结合,耦合使用新颖的损失功能。在先前使用符号距离功能表示的结构化隐式人体模型,而不是使用统一的占用率来学习具有统一占用的光域字段。这使我们能够从稀疏视图中稳健地融合信息,并概括超出在训练中观察到的姿势或视图。此外,我们应用几何限制以共同学习观察到的主题的结构 - 包括身体和衣服 - 并将辐射场正规化为几何合理的解决方案。在多个数据集上的广泛实验证明了我们方法的稳健性和准确性,其概括能力显着超出了一系列的姿势和视图,以及超出所观察到的形状的统计外推。
translated by 谷歌翻译
Figure 1: Example output from our system, generated in real-time with a handheld Kinect depth camera and no other sensing infrastructure. Normal maps (colour) and Phong-shaded renderings (greyscale) from our dense reconstruction system are shown. On the left for comparison is an example of the live, incomplete, and noisy data from the Kinect sensor (used as input to our system).
translated by 谷歌翻译
This paper presents an approach that reconstructs a hand-held object from a monocular video. In contrast to many recent methods that directly predict object geometry by a trained network, the proposed approach does not require any learned prior about the object and is able to recover more accurate and detailed object geometry. The key idea is that the hand motion naturally provides multiple views of the object and the motion can be reliably estimated by a hand pose tracker. Then, the object geometry can be recovered by solving a multi-view reconstruction problem. We devise an implicit neural representation-based method to solve the reconstruction problem and address the issues of imprecise hand pose estimation, relative hand-object motion, and insufficient geometry optimization for small objects. We also provide a newly collected dataset with 3D ground truth to validate the proposed approach.
translated by 谷歌翻译
综合照片 - 现实图像和视频是计算机图形的核心,并且是几十年的研究焦点。传统上,使用渲染算法(如光栅化或射线跟踪)生成场景的合成图像,其将几何形状和材料属性的表示为输入。统称,这些输入定义了实际场景和呈现的内容,并且被称为场景表示(其中场景由一个或多个对象组成)。示例场景表示是具有附带纹理的三角形网格(例如,由艺术家创建),点云(例如,来自深度传感器),体积网格(例如,来自CT扫描)或隐式曲面函数(例如,截短的符号距离)字段)。使用可分辨率渲染损耗的观察结果的这种场景表示的重建被称为逆图形或反向渲染。神经渲染密切相关,并将思想与经典计算机图形和机器学习中的思想相结合,以创建用于合成来自真实观察图像的图像的算法。神经渲染是朝向合成照片现实图像和视频内容的目标的跨越。近年来,我们通过数百个出版物显示了这一领域的巨大进展,这些出版物显示了将被动组件注入渲染管道的不同方式。这种最先进的神经渲染进步的报告侧重于将经典渲染原则与学习的3D场景表示结合的方法,通常现在被称为神经场景表示。这些方法的一个关键优势在于它们是通过设计的3D-一致,使诸如新颖的视点合成捕获场景的应用。除了处理静态场景的方法外,我们还涵盖了用于建模非刚性变形对象的神经场景表示...
translated by 谷歌翻译
结合同时定位和映射(SLAM)估计和动态场景建模可以高效地在动态环境中获得机器人自主权。机器人路径规划和障碍避免任务依赖于场景中动态对象运动的准确估计。本文介绍了VDO-SLAM,这是一种强大的视觉动态对象感知SLAM系统,用于利用语义信息,使得能够在场景中进行准确的运动估计和跟踪动态刚性物体,而无需任何先前的物体形状或几何模型的知识。所提出的方法识别和跟踪环境中的动态对象和静态结构,并将这些信息集成到统一的SLAM框架中。这导致机器人轨迹的高度准确估计和对象的全部SE(3)运动以及环境的时空地图。该系统能够从对象的SE(3)运动中提取线性速度估计,为复杂的动态环境中的导航提供重要功能。我们展示了所提出的系统对许多真实室内和室外数据集的性能,结果表明了对最先进的算法的一致和实质性的改进。可以使用源代码的开源版本。
translated by 谷歌翻译
4D隐式表示中的最新进展集中在全球控制形状和运动的情况下,低维潜在向量,这很容易缺少表面细节和累积跟踪误差。尽管许多深层的本地表示显示了3D形状建模的有希望的结果,但它们的4D对应物尚不存在。在本文中,我们通过提出一个新颖的局部4D隐性代表来填补这一空白,以动态穿衣人,名为Lord,具有4D人类建模和局部代表的优点,并实现具有详细的表面变形的高保真重建,例如衣服皱纹。特别是,我们的主要见解是鼓励网络学习本地零件级表示的潜在代码,能够解释本地几何形状和时间变形。为了在测试时间进行推断,我们首先估计内部骨架运动在每个时间步中跟踪本地零件,然后根据不同类型的观察到的数据通过自动编码来优化每个部分的潜在代码。广泛的实验表明,该提出的方法具有强大的代表4D人类的能力,并且在实际应用上胜过最先进的方法,包括从稀疏点,非刚性深度融合(质量和定量)进行的4D重建。
translated by 谷歌翻译
我们介绍了日常桌面对象的998 3D型号的数据集及其847,000个现实世界RGB和深度图像。每个图像的相机姿势和对象姿势的准确注释都以半自动化方式执行,以促进将数据集用于多种3D应用程序,例如形状重建,对象姿势估计,形状检索等。3D重建由于缺乏适当的现实世界基准来完成该任务,并证明我们的数据集可以填补该空白。整个注释数据集以及注释工具和评估基线的源代码可在http://www.ocrtoc.org/3d-reconstruction.html上获得。
translated by 谷歌翻译
我们提出了一个新颖的端到端RGB-D SLAM,IDF-SLAM,它采用了基于功能的深神经跟踪器作为前端和NERF风格的神经隐式映射器作为后端。神经隐式映射器经过训练,尽管神经跟踪器在扫描仪数据集中鉴定了,但它在神经隐式映射器的训练中也得到了挑战。在这样的设计下,我们的IDF-SLAM能够学习使用特定场景的功能进行相机跟踪,从而使SLAM系统的终身学习。在没有引入地面真相姿势的情况下,对追踪器和映射器的培训都进行了自我监督。我们测试了IDF-SLAM在副本和扫描数据集上的性能,并将结果与两个基于NERF的两个基于NERF的神经SLAM系统进行了比较。拟议的IDF-SLAM在相机跟踪中的场景重建和竞争性能方面展示了最先进的结果。
translated by 谷歌翻译
我们提出了GO-SURF,这是一种直接特征网格优化方法,可从RGB-D序列进行准确和快速的表面重建。我们用学习的分层特征素网格对基础场景进行建模,该网络封装了多级几何和外观本地信息。特征向量被直接优化,使得三线性插值后,由两个浅MLP解码为签名的距离和辐射度值,并通过表面体积渲染渲染,合成和观察到的RGB/DEPTH值之间的差异最小化。我们的监督信号-RGB,深度和近似SDF可以直接从输入图像中获得,而无需融合或后处理。我们制定了一种新型的SDF梯度正则化项,该项鼓励表面平滑度和孔填充,同时保持高频细节。 GO-SURF可以优化$ 1 $ - $ 2 $ K框架的序列,价格为$ 15 $ - $ 45 $分钟,$ \ times60 $的速度超过了NeuralRGB-D,这是基于MLP表示的最相关的方法,同时保持PAR性能在PAR上的性能标准基准。项目页面:https://jingwenwang95.github.io/go_surf/
translated by 谷歌翻译
最近,我们看到了照片真实的人类建模和渲染的神经进展取得的巨大进展。但是,将它们集成到现有的下游应用程序中的现有网络管道中仍然具有挑战性。在本文中,我们提出了一种全面的神经方法,用于从密集的多视频视频中对人类表演进行高质量重建,压缩和渲染。我们的核心直觉是用一系列高效的神经技术桥接传统的动画网格工作流程。我们首先引入一个神经表面重建器,以在几分钟内进行高质量的表面产生。它与多分辨率哈希编码的截短签名距离场(TSDF)的隐式体积渲染相结合。我们进一步提出了一个混合神经跟踪器来生成动画网格,该网格将明确的非刚性跟踪与自我监督框架中的隐式动态变形结合在一起。前者将粗糙的翘曲返回到规范空间中,而后者隐含的一个隐含物进一步预测了使用4D哈希编码的位移,如我们的重建器中。然后,我们使用获得的动画网格讨论渲染方案,从动态纹理到各种带宽设置下的Lumigraph渲染。为了在质量和带宽之间取得复杂的平衡,我们通过首先渲染6个虚拟视图来涵盖表演者,然后进行闭塞感知的神经纹理融合,提出一个分层解决方案。我们证明了我们方法在各种平台上的各种基于网格的应用程序和照片真实的自由观看体验中的功效,即,通过移动AR插入虚拟人类的表演,或通过移动AR插入真实环境,或带有VR头戴式的人才表演。
translated by 谷歌翻译
捕获一般的变形场景对于许多计算机图形和视觉应用至关重要,当只有单眼RGB视频可用时,这尤其具有挑战性。竞争方法假设密集的点轨道,3D模板,大规模训练数据集或仅捕获小规模的变形。与这些相反,我们的方法UB4D在挑战性的情况下超过了先前的艺术状态,而没有做出这些假设。我们的技术包括两个新的,在非刚性3D重建的背景下,组件,即1)1)针对非刚性场景的基于坐标的和隐性的神经表示,这使动态场景无偏重建,2)新颖的新颖。动态场景流量损失,可以重建较大的变形。我们的新数据集(将公开可用)的结果表明,就表面重建精度和对大变形的鲁棒性而言,对最新技术的明显改善。访问项目页面https://4dqv.mpi-inf.mpg.de/ub4d/。
translated by 谷歌翻译
铰接式3D形状重建的事先工作通常依赖于专用传感器(例如,同步的多摄像机系统)或预先构建的3D可变形模型(例如,Smal或SMPL)。这些方法无法在野外扩展到不同的各种物体。我们呈现Banmo,这是一种需要专用传感器的方法,也不需要预定义的模板形状。 Banmo在可怜的渲染框架中从许多单眼休闲视频中建立高保真,铰接式的3D模型(包括形状和动画皮肤的重量)。虽然许多视频的使用提供了更多的相机视图和对象关节的覆盖范围,但它们在建立不同背景,照明条件等方面建立了重大挑战。我们的主要洞察力是合并三所思想学校; (1)使用铰接骨骼和混合皮肤的经典可变形形状模型,(2)可容纳基于梯度的优化,(3)在像素之间产生对应关系的规范嵌入物模型。我们介绍了神经混合皮肤模型,可允许可微分和可逆的铰接变形。与规范嵌入式结合时,这些模型允许我们在跨越可通过循环一致性自我监督的视频中建立密集的对应。在真实和合成的数据集上,Banmo显示比人类和动物的先前工作更高保真3D重建,具有从新颖的观点和姿势的现实图像。项目网页:Banmo-www.github.io。
translated by 谷歌翻译