In this work, we tackle two vital tasks in automated driving systems, i.e., driver intent prediction and risk object identification from egocentric images. Mainly, we investigate the question: what would be good road scene-level representations for these two tasks? We contend that a scene-level representation must capture higher-level semantic and geometric representations of traffic scenes around ego-vehicle while performing actions to their destinations. To this end, we introduce the representation of semantic regions, which are areas where ego-vehicles visit while taking an afforded action (e.g., left-turn at 4-way intersections). We propose to learn scene-level representations via a novel semantic region prediction task and an automatic semantic region labeling algorithm. Extensive evaluations are conducted on the HDD and nuScenes datasets, and the learned representations lead to state-of-the-art performance for driver intention prediction and risk object identification.
translated by 谷歌翻译
对行人行为的预测对于完全自主车辆安全有效地在繁忙的城市街道上驾驶至关重要。未来的自治车需要适应混合条件,不仅具有技术还是社会能力。随着更多算法和数据集已经开发出预测行人行为,这些努力缺乏基准标签和估计行人的时间动态意图变化的能力,提供了对交互场景的解释,以及具有社会智能的支持算法。本文提出并分享另一个代表数据集,称为Iupui-CSRC行人位于意图(PSI)数据,除了综合计算机视觉标签之外,具有两种创新标签。第一部小说标签是在自助式车辆前面交叉的行人的动态意图变化,从24个司机中实现了不同的背景。第二个是在估计行人意图并在交互期间预测其行为时对驾驶员推理过程的基于文本的解释。这些创新标签可以启用几个计算机视觉任务,包括行人意图/行为预测,车辆行人互动分割和用于可解释算法的视频到语言映射。发布的数据集可以从根本上从根本上改善行人行为预测模型的发展,并开发社会智能自治车,以有效地与行人进行互动。 DataSet已被不同的任务进行评估,并已释放到公众访问。
translated by 谷歌翻译
Modern autonomous driving system is characterized as modular tasks in sequential order, i.e., perception, prediction and planning. As sensors and hardware get improved, there is trending popularity to devise a system that can perform a wide diversity of tasks to fulfill higher-level intelligence. Contemporary approaches resort to either deploying standalone models for individual tasks, or designing a multi-task paradigm with separate heads. These might suffer from accumulative error or negative transfer effect. Instead, we argue that a favorable algorithm framework should be devised and optimized in pursuit of the ultimate goal, i.e. planning of the self-driving-car. Oriented at this goal, we revisit the key components within perception and prediction. We analyze each module and prioritize the tasks hierarchically, such that all these tasks contribute to planning (the goal). To this end, we introduce Unified Autonomous Driving (UniAD), the first comprehensive framework up-to-date that incorporates full-stack driving tasks in one network. It is exquisitely devised to leverage advantages of each module, and provide complementary feature abstractions for agent interaction from a global perspective. Tasks are communicated with unified query design to facilitate each other toward planning. We instantiate UniAD on the challenging nuScenes benchmark. With extensive ablations, the effectiveness of using such a philosophy is proven to surpass previous state-of-the-arts by a large margin in all aspects. The full suite of codebase and models would be available to facilitate future research in the community.
translated by 谷歌翻译
在由车辆安装的仪表板摄像机捕获的视频中检测危险交通代理(仪表板)对于促进在复杂环境中的安全导航至关重要。与事故相关的视频只是驾驶视频大数据的一小部分,并且瞬态前的事故流程具有高度动态和复杂性。此外,风险和非危险交通代理的外观可能相似。这些使驾驶视频中的风险对象本地化特别具有挑战性。为此,本文提出了一个注意力引导的多式功能融合网络(AM-NET),以将仪表板视频的危险交通代理本地化。两个封闭式复发单元(GRU)网络使用对象边界框和从连续视频帧中提取的光流功能来捕获时空提示,以区分危险交通代理。加上GRUS的注意力模块学会了与事故相关的交通代理。融合了两个功能流,AM-NET预测了视频中交通代理的风险评分。在支持这项研究的过程中,本文还引入了一个名为“风险对象本地化”(ROL)的基准数据集。该数据集包含带有事故,对象和场景级属性的空间,时间和分类注释。拟议的AM-NET在ROL数据集上实现了85.73%的AUC的有希望的性能。同时,AM-NET在DOTA数据集上优于视频异常检测的当前最新视频异常检测。一项彻底的消融研究进一步揭示了AM-NET通过评估其不同组成部分的贡献的优点。
translated by 谷歌翻译
考虑到安全至关重要自动化系统中情境意识的功能,对驾驶场景的风险及其解释性的感知对于自主和合作驾驶特别重要。为了实现这一目标,本文提出了在驾驶场景中的共同风险定位的新研究方向及其作为自然语言描述的风险解释。由于缺乏标准基准,我们收集了一个大规模数据集,戏剧性(带有字幕模块的驾驶风险评估机制),该数据集由17,785个在日本东京收集的互动驾驶场景组成。我们的戏剧数据集适用于带有相关重要对象的驾驶风险的视频和对象级别的问题,以实现视觉字幕的目标,作为一种自由形式的语言描述,利用封闭式和开放式响应用于多层次问题,可以用来使用这些响应,可用于在驾驶场景中评估一系列视觉字幕功能。我们将这些数据提供给社区以进行进一步研究。使用戏剧,我们探索了在互动驾驶场景中的联合风险定位和字幕的多个方面。特别是,我们基准了各种多任务预测架构,并提供了关节风险定位和风险字幕的详细分析。数据集可在https://usa.honda-ri.com/drama上获得
translated by 谷歌翻译
许多现有的自动驾驶范式涉及多个任务的多个阶段离散管道。为了更好地预测控制信号并增强用户安全性,希望从联合时空特征学习中受益的端到端方法是可取的。尽管基于激光雷达的输入或隐式设计有一些开创性的作品,但在本文中,我们在可解释的基于视觉的设置中提出了问题。特别是,我们提出了一种空间性特征学习方案,以同时同时进行感知,预测和计划任务的一组更具代表性的特征,称为ST-P3。具体而言,提出了一种以自我为中心的积累技术来保留3D空间中的几何信息,然后才能感知鸟类视图转化。设计了双重途径建模,以考虑将来的预测,以将过去的运动变化考虑到过去。引入了基于时间的精炼单元,以弥补识别基于视觉的计划的元素。据我们所知,我们是第一个系统地研究基于端视力的自主驾驶系统的每个部分。我们在开环Nuscenes数据集和闭环CARLA模拟上对以前的最先进的方法进行基准测试。结果显示了我们方法的有效性。源代码,模型和协议详细信息可在https://github.com/openperceptionx/st-p3上公开获得。
translated by 谷歌翻译
Autonomous driving requires efficient reasoning about the location and appearance of the different agents in the scene, which aids in downstream tasks such as object detection, object tracking, and path planning. The past few years have witnessed a surge in approaches that combine the different taskbased modules of the classic self-driving stack into an End-toEnd(E2E) trainable learning system. These approaches replace perception, prediction, and sensor fusion modules with a single contiguous module with shared latent space embedding, from which one extracts a human-interpretable representation of the scene. One of the most popular representations is the Birds-eye View (BEV), which expresses the location of different traffic participants in the ego vehicle frame from a top-down view. However, a BEV does not capture the chromatic appearance information of the participants. To overcome this limitation, we propose a novel representation that captures various traffic participants appearance and occupancy information from an array of monocular cameras covering 360 deg field of view (FOV). We use a learned image embedding of all camera images to generate a BEV of the scene at any instant that captures both appearance and occupancy of the scene, which can aid in downstream tasks such as object tracking and executing language-based commands. We test the efficacy of our approach on synthetic dataset generated from CARLA. The code, data set, and results can be found at https://rebrand.ly/APP OCC-results.
translated by 谷歌翻译
对于与行人一起运行的移动机器人,对地面基础设施(例如道路和街道交叉路口)进行了牢固的分类。尽管许多语义分割数据集可用于自动驾驶汽车,但在此类数据集中训练的模型在部署在行人空间中的机器人上时表现出较大的域间隙。从行人角度录制的手动注释图像既昂贵又耗时。为了克服这一挑战,我们提出了TrackletMapper,这是一个注释地面类型的框架,例如人行道,道路和街道交叉点,而无需进行人类注销的数据。为此,我们将机器人自我trajectory和其他交通参与者的路径投射到自我视图相机图像中,为多种类型的接地表面创建稀疏的语义注释,从中可以从中训练地面分段模型。我们进一步表明,该模型可以通过汇总地面图并将其投影到相机图像中,从而自行启动,从而获得额外的性能优势,从而与稀疏的踪迹注释相比,创建了一组密集的训练注释。我们在定性和定量上证明了我们在一个新型的大型数据集上,用于在行人区域运营的移动机器人。代码和数据集将在http://trackletmapper.cs.uni-freiburg.de上提供。
translated by 谷歌翻译
自主驾驶中安全路径规划是由于静态场景元素和不确定的周围代理的相互作用,这是一个复杂的任务。虽然所有静态场景元素都是信息来源,但对自助车辆可用的信息有不对称的重要性。我们展示了一个具有新颖功能的数据集,签署了Parience,定义为指示符号是否明显地对自助式车辆的目标有关交通规则的目标。在裁剪标志上使用卷积网络,通过道路类型,图像坐标和计划机动的实验增强,我们预测了76%的准确性,使用76%的符号蓬勃发展,并使用与标志图像的车辆机动信息找到最佳改进。
translated by 谷歌翻译
Panoptic图像分割是计算机视觉任务,即在图像中查找像素组并为其分配语义类别和对象实例标识符。由于其在机器人技术和自动驾驶中的关键应用,图像细分的研究变得越来越流行。因此,研究社区依靠公开可用的基准数据集来推进计算机视觉中的最新技术。但是,由于将图像标记为高昂的成本,因此缺乏适合全景分割的公开地面真相标签。高标签成本还使得将现有数据集扩展到视频域和多相机设置是一项挑战。因此,我们介绍了Waymo Open DataSet:全景视频全景分割数据集,这是一个大型数据集,它提供了用于自主驾驶的高质量的全景分割标签。我们使用公开的Waymo打开数据集生成数据集,利用各种相机图像集。随着时间的推移,我们的标签是一致的,用于视频处理,并且在车辆上安装的多个摄像头保持一致,以了解全景的理解。具体而言,我们为28个语义类别和2,860个时间序列提供标签,这些标签由在三个不同地理位置驾驶的自动驾驶汽车上安装的五个摄像机捕获,从而导致总共标记为100k标记的相机图像。据我们所知,这使我们的数据集比现有的数据集大量数据集大的数量级。我们进一步提出了一个新的基准,用于全景视频全景分割,并根据DeepLab模型家族建立许多强大的基准。我们将公开制作基准和代码。在https://waymo.com/open上找到数据集。
translated by 谷歌翻译
速度控制预测是驾驶员行为分析中一个具有挑战性的问题,旨在预测驾驶员在控制车速(例如制动或加速度)中的未来行动。在本文中,我们尝试仅使用以自我为中心的视频数据来应对这一挑战,与使用第三人称视图数据或额外的车辆传感器数据(例如GPS或两者)的文献中的大多数作品相比。为此,我们提出了一个基于新型的图形卷积网络(GCN)网络,即Egospeed-net。我们的动机是,随着时间的推移,对象的位置变化可以为我们提供非常有用的线索,以预测未来的速度变化。我们首先使用完全连接的图形图将每个类的对象之间的空间关系建模,并在其上应用GCN进行特征提取。然后,我们利用一个长期的短期内存网络将每个类别的此类特征随着时间的流逝融合到矢量中,加入此类矢量并使用多层perceptron分类器预测速度控制动作。我们在本田研究所驾驶数据集上进行了广泛的实验,并证明了Egospeed-NET的出色性能。
translated by 谷歌翻译
Figure 1: We introduce datasets for 3D tracking and motion forecasting with rich maps for autonomous driving. Our 3D tracking dataset contains sequences of LiDAR measurements, 360 • RGB video, front-facing stereo (middle-right), and 6-dof localization. All sequences are aligned with maps containing lane center lines (magenta), driveable region (orange), and ground height. Sequences are annotated with 3D cuboid tracks (green). A wider map view is shown in the bottom-right.
translated by 谷歌翻译
近年来,我们在自动驾驶汽车的发展中看到了显着的步骤。多家公司开始推出令人印象深刻的系统,这些系统在各种环境中工作。这些系统有时可以给人一种印象,即完全自动驾驶即将到来,我们很快就会在没有方向盘的情况下建造汽车。给予AI的自主权和控制水平的增加为人道交互的新模式提供了机会。然而,调查表明,在自动驾驶汽车中对AI提供更多控制伴随着乘客的一定程度的不安。在尝试缓解这个问题时,最近的作品通过允许乘客提供指导到视觉场景中的特定对象的命令来采取自然语言的方法。尽管如此,这只是汽车的一半,因为汽车也应该了解该命令的物理目的地,这就是我们在本文中的专注。我们提出了一个扩展,其中我们向3D目的地注释了在执行给定的命令之后需要达到的3D目的地,并在预测该目的地位置进行多个不同的基线进行评估。此外,我们介绍一个胜过适用于这种特定设置的先前作品的模型。
translated by 谷歌翻译
在本文中,我们提出了一个系统,以培训不仅从自我车辆收集的经验,而且还观察到的所有车辆的经验。该系统使用其他代理的行为来创建更多样化的驾驶场景,而无需收集其他数据。从其他车辆学习的主要困难是没有传感器信息。我们使用一组监督任务来学习一个中间表示,这是对控制车辆的观点不变的。这不仅在训练时间提供了更丰富的信号,而且还可以在推断过程中进行更复杂的推理。了解所有车辆驾驶如何有助于预测测试时的行为,并避免碰撞。我们在闭环驾驶模拟中评估该系统。我们的系统的表现优于公共卡拉排行榜上的所有先前方法,较大的利润率将驾驶得分提高了25,路线完成率提高了24分。我们的方法赢得了2021年的卡拉自动驾驶挑战。代码和数据可在https://github.com/dotchen/lav上获得。
translated by 谷歌翻译
最近已经提出了3D车道检测的方法,以解决许多自动驾驶场景(上坡/下坡,颠簸等)中不准确的车道布局问题。先前的工作在复杂的情况下苦苦挣扎,因为它们对前视图和鸟类视图(BEV)之间的空间转换以及缺乏现实数据集的简单设计。在这些问题上,我们介绍了Persformer:具有新型基于变压器的空间特征变换模块的端到端单眼3D车道检测器。我们的模型通过参考摄像头参数来参与相关的前视本地区域来生成BEV功能。 Persformer采用统一的2D/3D锚设计和辅助任务,以同时检测2D/3D车道,从而提高功能一致性并分享多任务学习的好处。此外,我们发布了第一个大型现实世界3D车道数据集之一:OpenLane,具有高质量的注释和场景多样性。 OpenLane包含200,000帧,超过880,000个实例级别的车道,14个车道类别,以及场景标签和封闭式对象注释,以鼓励开发车道检测和更多与工业相关的自动驾驶方法。我们表明,在新的OpenLane数据集和Apollo 3D Lane合成数据集中,Persformer在3D车道检测任务中的表现明显优于竞争基线,并且在OpenLane上的2D任务中也与最新的算法相当。该项目页面可在https://github.com/openperceptionx/persformer_3dlane上找到,OpenLane数据集可在https://github.com/openperceptionx/openlane上提供。
translated by 谷歌翻译
随着自动驾驶汽车的快速发展,目击者对高清地图(HD地图)的需求蓬勃发展,这些地图(HD地图)在自主驾驶场景中提供了可靠且强大的静态环境信息。作为高清图中的主要高级元素之一,道路车道中心线对于下游任务(例如预测和计划)至关重要。人类注释器手动注释车道中心线高清图是劳动密集型,昂贵且效率低下的,严重限制了自动驾驶系统的广泛应用和快速部署。以前的工作很少探索中心线高清图映射问题,这是由于拓扑复杂和道路中心线的严重重叠问题。在本文中,我们提出了一种名为CenterLinedet的新方法,以自动创建Lane Centrine HD地图。通过模仿学习对CenterLinedet进行训练,并可以通过使用车辆安装的传感器进行迭代有效地检测到车道中心线的图。由于应用了类似DITR的变压器网络,CenterLinedet可以处理复杂的图形拓扑,例如车道相交。在大型公开数据集Nuscenes上评估了所提出的方法,并通过比较结果很好地证明了CenterLinedet的优势。本文附有一个演示视频和一个补充文档,可在\ url {https://tonyxuqaq.github.io/projects/centerlinedet/}中获得。
translated by 谷歌翻译
Panoptic现场了解和跟踪动态代理对于机器人和自动化车辆至关重要,以在城市环境中导航。由于LiDAR提供了方案的精确照明和几何描绘,使用LIDAR点云执行这些任务提供可靠的预测。然而,现有数据集缺乏城市场景类型的多样性,并且具有有限数量的动态对象实例,其阻碍了这些任务的学习以及开发方法的可信基准。在本文中,我们介绍了大规模的Panoptic Nuscenes基准数据集,它扩展了我们流行的NUSCENES DataSet,具有用于语义分割,Panoptic分段和Panoptic跟踪任务的Pock-Wise Trountruth annotations。为了便于比较,我们为我们提出的数据集提供了几个任务的强大基线。此外,我们分析了Panoptic跟踪的现有度量标准的缺点,并提出了一种解决问题的小说实例的Pat度量。我们提供详尽的实验,展示了Panoptic Nuscenes与现有数据集相比的效用,并在Nuscenes.org提供的在线评估服务器。我们认为,此扩展将加快新颖的现场了解动态城市环境的新方法研究。
translated by 谷歌翻译
最近,已经证明了与图形学习技术结合使用的道路场景图表示,在包括动作分类,风险评估和碰撞预测的任务中优于最先进的深度学习技术。为了使Road场景图形表示的应用探索,我们介绍了RoadScene2VEC:一个开源工具,用于提取和嵌入公路场景图。 RoadScene2VEC的目标是通过提供用于生成场景图的工具,为生成时空场景图嵌入的工具以及用于可视化和分析场景图的工具来实现Road场景图的应用程序和能力基于方法。 RoadScene2VEC的功能包括(i)来自Carla Simulator的视频剪辑或数据的自定义场景图,(ii)多种可配置的时空图嵌入模型和基于基于基于CNN的模型,(iii)内置功能使用图形和序列嵌入用于风险评估和碰撞预测应用,(iv)用于评估转移学习的工具,以及(v)用于可视化场景图的实用程序,并分析图形学习模型的解释性。我们展示了道路展示的效用,用于这些用例,具有实验结果和基于CNN的模型的实验结果和定性评估。 Rodscene2vec可在https://github.com/aicps/roadscene2vec提供。
translated by 谷歌翻译
鸟瞰图(BEV)地图已成为现场理解最强大的表达之一,因为他们能够提供丰富的空间上下文,同时容易解释和处理。此类地图已在许多实际任务中发现,广泛地依赖于准确的场景分段以及在BEV空间中的对象实例标识以进行操作。然而,现有的分段算法仅预测BEV空间中的语义,这限制了它们在对象实例概念也是关键的应用中的应用。在这项工作中,给出了前面视图(FV)中的单眼图像,前往直接预测BEV中的密集Panoptic分段图的第一个BEV Panoptic分割方法。我们的架构遵循自上而下的范式,并采用了一种新型密集变压器模块,包括两个不同的变压器,该模块包括从FV到BEV的输入图像中独立地将垂直和平坦区域映射到BEV的不同变压器。另外,我们推导出用于FV-BEV变换的灵敏度的数学制定,其允许我们智能地重量BEV空间中的像素,以考虑在FV图像上的变化描述。关于基提-360和NUSCENES数据集的广泛评估表明,我们的方法分别超过了PQ度量的最先进的3.61 pp和4.93 pp。
translated by 谷歌翻译
当前的端到端自动驾驶方法要么基于计划的轨迹运行控制器,要么直接执行控制预测,这已经跨越了两条单独研究的研究线。本文看到了它们彼此的潜在相互利益,主动探讨了这两个发展良好的世界的结合。具体而言,我们的集成方法分别有两个用于轨迹计划和直接控制的分支。轨迹分支可以预测未来的轨迹,而控制分支则涉及一种新颖的多步预测方案,以便可以将当前动作与未来状态之间的关系进行推理。连接了两个分支,因此控制分支在每个时间步骤中从轨迹分支接收相应的指导。然后将来自两个分支的输出融合以实现互补的优势。我们的结果在闭环城市驾驶环境中进行了评估,并使用CARLA模拟器具有挑战性的情况。即使有了单眼相机的输入,建议的方法在官方Carla排行榜上排名第一$,超过了其他具有多个传感器或融合机制的复杂候选人。源代码和数据将在https://github.com/openperceptionx/tcp上公开提供。
translated by 谷歌翻译