It has been experimentally demonstrated that humans are able to learn in a manner that allows them to make predictions on categories for which they have not seen any examples (Malaviya et al., 2022). Sucholutsky and Schonlau (2020) have recently presented a machine learning approach that aims to do the same. They utilise synthetically generated data and demonstrate that it is possible to achieve sub-linear scaling and develop models that can learn to recognise N classes from M training samples where M is less than N - aka less-than-one shot learning. Their method was, however, defined for univariate or simple multivariate data (Sucholutsky et al., 2021). We extend it to work on large, high-dimensional and real-world datasets and empirically validate it in this new and challenging setting. We apply this method to learn previously unseen NLP tasks from very few examples (4, 8 or 16). We first generate compact, sophisticated less-than-one shot representations called soft-label prototypes which are fitted on training data, capturing the distribution of different classes across the input domain space. We then use a modified k-Nearest Neighbours classifier to demonstrate that soft-label prototypes can classify data competitively, even outperforming much more computationally complex few-shot learning methods.
translated by 谷歌翻译
Metric-based meta-learning is one of the de facto standards in few-shot learning. It composes of representation learning and metrics calculation designs. Previous works construct class representations in different ways, varying from mean output embedding to covariance and distributions. However, using embeddings in space lacks expressivity and cannot capture class information robustly, while statistical complex modeling poses difficulty to metric designs. In this work, we use tensor fields (``areas'') to model classes from the geometrical perspective for few-shot learning. We present a simple and effective method, dubbed hypersphere prototypes (HyperProto), where class information is represented by hyperspheres with dynamic sizes with two sets of learnable parameters: the hypersphere's center and the radius. Extending from points to areas, hyperspheres are much more expressive than embeddings. Moreover, it is more convenient to perform metric-based classification with hypersphere prototypes than statistical modeling, as we only need to calculate the distance from a data point to the surface of the hypersphere. Following this idea, we also develop two variants of prototypes under other measurements. Extensive experiments and analysis on few-shot learning tasks across NLP and CV and comparison with 20+ competitive baselines demonstrate the effectiveness of our approach.
translated by 谷歌翻译
很少有图像分类是一个具有挑战性的问题,旨在仅基于少量培训图像来达到人类的识别水平。少数图像分类的一种主要解决方案是深度度量学习。这些方法是,通过将看不见的样本根据距离的距离进行分类,可在强大的深神经网络中学到的嵌入空间中看到的样品,可以避免以少数图像分类的少数训练图像过度拟合,并实现了最新的图像表现。在本文中,我们提供了对深度度量学习方法的最新审查,以进行2018年至2022年的少量图像分类,并根据度量学习的三个阶段将它们分为三组,即学习功能嵌入,学习课堂表示和学习距离措施。通过这种分类法,我们确定了他们面临的不同方法和问题的新颖性。我们通过讨论当前的挑战和未来趋势进行了少量图像分类的讨论。
translated by 谷歌翻译
We propose prototypical networks for the problem of few-shot classification, where a classifier must generalize to new classes not seen in the training set, given only a small number of examples of each new class. Prototypical networks learn a metric space in which classification can be performed by computing distances to prototype representations of each class. Compared to recent approaches for few-shot learning, they reflect a simpler inductive bias that is beneficial in this limited-data regime, and achieve excellent results. We provide an analysis showing that some simple design decisions can yield substantial improvements over recent approaches involving complicated architectural choices and meta-learning. We further extend prototypical networks to zero-shot learning and achieve state-of-theart results on the CU-Birds dataset.
translated by 谷歌翻译
有监督的基于深度学习的方法已应用于以任务为导向的对话框,并在有足够数量的培训示例可用时对有限的域和语言应用有效。在实践中,这些方法遭受了域驱动设计和资源不足的语言的缺点。域和语言模型应该随着问题空间的发展而增长和变化。一方面,对转移学习的研究证明了基于多语言变压器模型学习语义丰富的表示的跨语性能力。另一方面,除了上述方法之外,元学习还能够开发任务和语言学习算法,能够实现泛滥。在这种情况下,本文提出了使用典型的神经网络和基于多语言变压器的模型来研究使用协同进行几次学习的跨语性可传递性。自然语言的实验理解多亚提斯++语料库的任务表明,我们的方法基本上改善了低资源和高资源语言之间观察到的转移学习表现。更普遍地说,我们的方法证实,可以将具有特定语言的有意义的潜在空间推广到使用元学习的情况下看不见和资源不足的潜在空间。
translated by 谷歌翻译
epiSodic学习是对几枪学习感兴趣的研究人员和从业者的流行练习。它包括在一系列学习问题(或剧集)中组织培训,每个人分为小型训练和验证子集,以模仿评估期间遇到的情况。但这总是必要吗?在本文中,我们调查了在集发作的级别使用非参数方法,例如最近邻居等方法的焦点学习的有用性。对于这些方法,我们不仅展示了广州学习的限制是如何不必要的,而是他们实际上导致利用培训批次的数据低效方式。我们通过匹配和原型网络进行广泛的消融实验,其中两个最流行的方法在集中的级别使用非参数方法。他们的“非焦化”对应物具有很大的更简单,具有较少的近似参数,并在多个镜头分类数据集中提高它们的性能。
translated by 谷歌翻译
元学习考虑了学习高效学习过程的问题,可以利用其过去的经验来准确解决新任务。然而,元学习的效果是至关重要的,这取决于可用于训练的任务的分布,并且通常认为这是已知的先验或由有限的监督数据集构建。在这项工作中,我们的目标是通过考虑从未标记的文本自动提出的自我监督任务来提供元学习的任务分布,以在NLP中启用大规模的元学习。我们通过考虑任务多样性,困难,类型,域和课程的重要方面,并调查它们如何影响元学习表现的重要方面,设计多个自我监督任务分布。我们的分析表明,所有这些因素有意义地改变任务分配,一些突起在荟萃学习模型的下游的下游显着改进。凭经验,20下游任务的结果显示出几次学习的显着改善 - 在以前的无监督的元学习方法增加到+ 4.2%的绝对精度(平均值),并与换行符的监督方法相比表现。
translated by 谷歌翻译
深度学习一直是自然语言处理(NLP)领域的主流技术。但是,这些技术需要许多标记的数据,并且在整个域之间不太概括。元学习是机器学习研究方法的一个领域,以学习更好的学习算法。方法旨在改善各个方面的算法,包括数据效率和概括性。在许多NLP任务中已经显示出方法的功效,但是在NLP中没有系统的调查,这阻碍了更多的研究人员加入该领域。我们使用这篇调查文件的目标是为研究人员提供NLP中相关的元学习作品的指针,并吸引NLP社区的更多关注以推动未来的创新。本文首先介绍了元学习和共同方法的一般概念。然后,我们总结了任务构建设置和用于各种NLP问题的元学习的应用,并审查NLP社区中元学习的发展。
translated by 谷歌翻译
Few-shot relation extraction (FSRE) aims at recognizing unseen relations by learning with merely a handful of annotated instances. To generalize to new relations more effectively, this paper proposes a novel pipeline for the FSRE task based on queRy-information guided Attention and adaptive Prototype fuSion, namely RAPS. Specifically, RAPS first derives the relation prototype by the query-information guided attention module, which exploits rich interactive information between the support instances and the query instances, in order to obtain more accurate initial prototype representations. Then RAPS elaborately combines the derived initial prototype with the relation information by the adaptive prototype fusion mechanism to get the integrated prototype for both train and prediction. Experiments on the benchmark dataset FewRel 1.0 show a significant improvement of our method against state-of-the-art methods.
translated by 谷歌翻译
元学习方法旨在构建能够快速适应低数据制度的新任务的学习算法。这种算法的主要基准之一是几次学习问题。在本文中,我们调查了在培训期间采用多任务方法的标准元学习管道的修改。该提出的方法同时利用来自常见损​​失函数中的几个元训练任务的信息。每个任务在损耗功能中的影响由相应的重量控制。正确优化这些权重可能对整个模型的训练产生很大影响,并且可能会提高测试时间任务的质量。在这项工作中,我们提出并调查了使用同时扰动随机近似(SPSA)方法的方法的使用方法,用于元列车任务权重优化。我们还将提出的算法与基于梯度的方法进行了比较,发现随机近似表明了测试时间最大的质量增强。提出的多任务修改可以应用于使用元学习管道的几乎所有方法。在本文中,我们研究了这种修改对CiFar-FS,FC100,TieredimAgenet和MiniimAgenet几秒钟学习基准的原型网络和模型 - 不可知的元学习算法。在这些实验期间,多任务修改已经证明了对原始方法的改进。所提出的SPSA跟踪算法显示了对最先进的元学习方法具有竞争力的最大精度提升。我们的代码可在线获取。
translated by 谷歌翻译
面向目标的对话系统的核心组件之一是意图检测的任务。由于可用的附带话语的稀缺性,目的检测时的几次射门学习是挑战。尽管最近的作品已经提出了使用基于度量的基于优化的方法,但任务仍然在大标签空间中挑战,射击数量小得多。由于在测试阶段,由于两种新颖和看到的课程存在,概括的少量学习更加困难。在这项工作中,我们提出了一种基于自然语言推理的简单有效的方法,不仅解决了几次射击意图检测问题,而且在零射击和广义少数射击学习问题中证明是有用的。我们对许多自然语言理解(NLU)和口语理解(SLU)数据集的大量实验表明了我们的方法的有效性。此外,我们突出了我们基于NLI的方法的设置,通过巨大的利润率优于基线。
translated by 谷歌翻译
我们提出了弗雷多(Fredo),几张文档级别的关系提取(FSDLRE)基准。与基于句子级别的关系提取语料库建立的现有基准相反,我们认为文档级的语料库提供了更多的现实主义,尤其是关于无原始的(nota)分布。因此,我们建议一组FSDLRE任务,并基于两个现有的监督学习数据集(DOCRED和SCIERC)构建基准测试。我们将最先进的句子级方法MNAV调整为文档级别,并进一步开发它以改善域的适应性。我们发现FSDLRE是一个充满挑战的环境,具有有趣的新特征,例如从支持集中进行nota实例的能力。数据,代码和训练的模型可在线获得(https://github.com/nicpopovic/fredo)。
translated by 谷歌翻译
多标签少量拍摄图像分类(ML-FSIC)是基于少量训练示例将描述性标签分配给以前的未经看台图像的任务。多标签设置的关键特征是图像通常具有多个标签,该标签通常是指图像的不同区域。当估计原型的基于度量的设置时,重要的是确定哪些区域与哪个标签相关,但训练数据有限使得这一极具挑战性。作为一个解决方案,在本文中,我们建议使用Word Embeddings作为关于标签含义的先前知识的形式。特别地,使用依赖于标签嵌入的关注机制来聚合支持图像的本地特征映射来获得视觉原型。作为一个重要的优势,我们的模型可以在不需要微调任何模型参数的情况下推断出不必要的标签的原型,这证明了其强大的概括能力。 Coco和Pascal VOC的实验还表明,我们的模型大大提高了当前最先进的。
translated by 谷歌翻译
提示方法被认为是几次自然语言处理的关键进展之一。最近对基于离散令牌的``硬提示''转移到连续``软提示''的最新研究,这些提示将可学习的向量用作伪提示代币并实现更好的性能。尽管显示出有希望的前景,但观察到这些软宣传的方法在很大程度上依赖良好的初始化来生效。不幸的是,获得软提示的完美初始化需要了解内在语言模型的工作和精心设计,这绝非易事,必须从头开始重新启动每个新任务。为了解决此问题,我们提出了一种称为Metaprompting的广义软提示方法,该方法采用了良好认可的模型 - 静态元学习算法,以自动找到更好的及时初始化,从而快速适应新的促进任务。问题并在四个不同的数据集上带来了显着改善(1次设置的准确性提高了6分),从而实现了新的最新性能。
translated by 谷歌翻译
图形广泛用于建模数据的关系结构,并且图形机器学习(ML)的研究具有广泛的应用,从分子图中的药物设计到社交网络中的友谊建议。图形ML的流行方法通常需要大量的标记实例来实现令人满意的结果,这在现实世界中通常是不可行的,因为在图形上标记了新出现的概念的数据(例如,在图形上的新分类)是有限的。尽管已将元学习应用于不同的几个图形学习问题,但大多数现有的努力主要假设所有所见类别的数据都是金标记的,而当这些方法弱标记时,这些方法可能会失去疗效严重的标签噪声。因此,我们旨在研究一个新的问题,即弱监督图元学习,以改善知识转移的模型鲁棒性。为了实现这一目标,我们提出了一个新的图形学习框架 - 本文中的图形幻觉网络(Meta-GHN)。基于一种新的鲁棒性增强的情节训练,元研究将从弱标记的数据中幻觉清洁节点表示,并提取高度可转移的元知识,这使该模型能够快速适应不见了的任务,几乎没有标记的实例。广泛的实验表明,元基因与现有图形学习研究的优越性有关弱监督的少数弹性分类的任务。
translated by 谷歌翻译
如果没有巨大的数据集,许多现代的深度学习技术就无法正常工作。同时,几个领域要求使用稀缺数据的方法。当样本具有变化的结构时,此问题甚至更为复杂。图表示学习技术最近已证明在各种领域中都成功。然而,当面对数据稀缺时,就业的体系结构表现不佳。另一方面,很少的学习允许在稀缺的数据制度中采用现代深度学习模型,而不会放弃其有效性。在这项工作中,我们解决了几乎没有图形分类的问题,这表明将简单的距离度量学习基线配备了最新的图形嵌入式嵌入者,可以在任务上获得竞争性结果。虽然体系结构的简单性足以超越更复杂的功能,它还可以直接添加。为此,我们表明可以通过鼓励任务条件的嵌入空间来获得其他改进。最后,我们提出了一种基于混合的在线数据增强技术,该技术在潜在空间中起作用,并显示其对任务的有效性。
translated by 谷歌翻译
在新课程训练时,几乎没有射击学习(FSL)方法通常假设具有准确标记的样品的清洁支持集。这个假设通常可能是不现实的:支持集,无论多么小,仍然可能包括标签错误的样本。因此,对标签噪声的鲁棒性对于FSL方法是实用的,但是这个问题令人惊讶地在很大程度上没有探索。为了解决FSL设置中标签错误的样品,我们做出了一些技术贡献。 (1)我们提供了简单而有效的特征聚合方法,改善了流行的FSL技术Protonet使用的原型。 (2)我们描述了一种嘈杂的噪声学习的新型变压器模型(TRANFS)。 TRANFS利用变压器的注意机制称重标记为错误的样品。 (3)最后,我们对迷你胶原和tieredimagenet的嘈杂版本进行了广泛的测试。我们的结果表明,TRANFS与清洁支持集的领先FSL方法相对应,但到目前为止,在存在标签噪声的情况下,它们的表现优于它们。
translated by 谷歌翻译
我们研究了如何在只有几个类别(几次拍摄设置)给出的一些样本时识别来自Unseen类别(开放式分类)的样本的问题。学习良好抽象的挑战是一个非常少数样本的课程使得从看不见的类别中检测样本非常困难;因此,开放式识别在少量拍摄设置中受到最小的关注。大多数开放式少量拍摄分类方法正规化SoftMax得分以表明开放类样本的均匀概率,但我们认为这种方法通常是不准确的,特别是在细粒度。相反,我们提出了一种新颖的示例性重建的元学习策略,用于共同检测开放类样本,以及通过基于度量的分类对来自观众的样本进行分类。充当类的代表的示例可以在训练数据集中提供或在特征域中估计。我们的框架,名为重建示例的基于少量拍摄的少量开放式分类器(Refofs),在各种数据集上测试,实验结果明确突出了我们作为新技术的方法。
translated by 谷歌翻译
数据增强是通过转换为机器学习的人工创建数据的人工创建,是一个跨机器学习学科的研究领域。尽管它对于增加模型的概括功能很有用,但它还可以解决许多其他挑战和问题,从克服有限的培训数据到正规化目标到限制用于保护隐私的数据的数量。基于对数据扩展的目标和应用的精确描述以及现有作品的分类法,该调查涉及用于文本分类的数据增强方法,并旨在为研究人员和从业者提供简洁而全面的概述。我们将100多种方法划分为12种不同的分组,并提供最先进的参考文献来阐述哪种方法可以通过将它们相互关联,从而阐述了哪种方法。最后,提供可能构成未来工作的基础的研究观点。
translated by 谷歌翻译
几个名称的实体识别(NER)使我们能够使用很少的标记示例为新域构建一个NER系统。但是,该任务的现有原型网络具有大致估计的标签依赖性和紧密分布的原型,因此经常导致错误分类。为了解决上述问题,我们提出了EP-NET,这是一个实体级原型网络,通过分散分布的原型增强。EP-NET构建实体级原型,并认为文本跨度为候选实体,因此它不再需要标签依赖性。此外,EP-NET从头开始训练原型,以分散分配它们,并使用空间投影将跨度与嵌入空间中的原型对齐。两项评估任务和少量网络设置的实验结果表明,EP-NET在整体性能方面始终优于先前的强大模型。广泛的分析进一步验证了EP-NET的有效性。
translated by 谷歌翻译