在新课程训练时,几乎没有射击学习(FSL)方法通常假设具有准确标记的样品的清洁支持集。这个假设通常可能是不现实的:支持集,无论多么小,仍然可能包括标签错误的样本。因此,对标签噪声的鲁棒性对于FSL方法是实用的,但是这个问题令人惊讶地在很大程度上没有探索。为了解决FSL设置中标签错误的样品,我们做出了一些技术贡献。 (1)我们提供了简单而有效的特征聚合方法,改善了流行的FSL技术Protonet使用的原型。 (2)我们描述了一种嘈杂的噪声学习的新型变压器模型(TRANFS)。 TRANFS利用变压器的注意机制称重标记为错误的样品。 (3)最后,我们对迷你胶原和tieredimagenet的嘈杂版本进行了广泛的测试。我们的结果表明,TRANFS与清洁支持集的领先FSL方法相对应,但到目前为止,在存在标签噪声的情况下,它们的表现优于它们。
translated by 谷歌翻译
在这项工作中,我们提出了一种超大形态器,一种基于变压器的模型,用于几次学习,直接从支持样品产生卷积神经网络(CNN)的权重。由于小生成的CNN模型对特定任务的依赖性由高容量变压器模型编码,因此我们有效地将大型任务空间的复杂性与各个任务的复杂性分离。我们的方法对于小目标CNN架构特别有效,其中学习固定的通用任务无关的嵌入不是最佳的,并且在关于任务的信息可以调制所有模型参数时实现更好的性能。对于较大的模型,我们发现单独生成最后一层允许我们产生比使用最先进的方法获得的竞争或更好的结果,同时端到端可分辨率。最后,我们将我们的方法扩展到一个半监督的政权,利用支持集中的未标记样本,进一步提高少量射击性能。
translated by 谷歌翻译
很少有图像分类是一个具有挑战性的问题,旨在仅基于少量培训图像来达到人类的识别水平。少数图像分类的一种主要解决方案是深度度量学习。这些方法是,通过将看不见的样本根据距离的距离进行分类,可在强大的深神经网络中学到的嵌入空间中看到的样品,可以避免以少数图像分类的少数训练图像过度拟合,并实现了最新的图像表现。在本文中,我们提供了对深度度量学习方法的最新审查,以进行2018年至2022年的少量图像分类,并根据度量学习的三个阶段将它们分为三组,即学习功能嵌入,学习课堂表示和学习距离措施。通过这种分类法,我们确定了他们面临的不同方法和问题的新颖性。我们通过讨论当前的挑战和未来趋势进行了少量图像分类的讨论。
translated by 谷歌翻译
Metric-based meta-learning is one of the de facto standards in few-shot learning. It composes of representation learning and metrics calculation designs. Previous works construct class representations in different ways, varying from mean output embedding to covariance and distributions. However, using embeddings in space lacks expressivity and cannot capture class information robustly, while statistical complex modeling poses difficulty to metric designs. In this work, we use tensor fields (``areas'') to model classes from the geometrical perspective for few-shot learning. We present a simple and effective method, dubbed hypersphere prototypes (HyperProto), where class information is represented by hyperspheres with dynamic sizes with two sets of learnable parameters: the hypersphere's center and the radius. Extending from points to areas, hyperspheres are much more expressive than embeddings. Moreover, it is more convenient to perform metric-based classification with hypersphere prototypes than statistical modeling, as we only need to calculate the distance from a data point to the surface of the hypersphere. Following this idea, we also develop two variants of prototypes under other measurements. Extensive experiments and analysis on few-shot learning tasks across NLP and CV and comparison with 20+ competitive baselines demonstrate the effectiveness of our approach.
translated by 谷歌翻译
Few-shot learning has become essential for producing models that generalize from few examples. In this work, we identify that metric scaling and metric task conditioning are important to improve the performance of few-shot algorithms. Our analysis reveals that simple metric scaling completely changes the nature of few-shot algorithm parameter updates. Metric scaling provides improvements up to 14% in accuracy for certain metrics on the mini-Imagenet 5-way 5-shot classification task. We further propose a simple and effective way of conditioning a learner on the task sample set, resulting in learning a task-dependent metric space. Moreover, we propose and empirically test a practical end-to-end optimization procedure based on auxiliary task co-training to learn a task-dependent metric space. The resulting few-shot learning model based on the task-dependent scaled metric achieves state of the art on mini-Imagenet. We confirm these results on another few-shot dataset that we introduce in this paper based on CIFAR100. Our code is publicly available at https://github.com/ElementAI/TADAM.
translated by 谷歌翻译
很少有视觉识别是指从一些标记实例中识别新颖的视觉概念。通过将查询表示形式与类表征进行比较以预测查询实例的类别,许多少数射击的视觉识别方法采用了基于公制的元学习范式。但是,当前基于度量的方法通常平等地对待所有实例,因此通常会获得有偏见的类表示,考虑到并非所有实例在总结了类级表示的实例级表示时都同样重要。例如,某些实例可能包含无代表性的信息,例如过多的背景和无关概念的信息,这使结果偏差。为了解决上述问题,我们提出了一个新型的基于公制的元学习框架,称为实例自适应类别表示网络(ICRL-net),以进行几次视觉识别。具体而言,我们开发了一个自适应实例重新平衡网络,具有在生成班级表示,通过学习和分配自适应权重的不同实例中的自适应权重时,根据其在相应类的支持集中的相对意义来解决偏见的表示问题。此外,我们设计了改进的双线性实例表示,并结合了两个新型的结构损失,即,阶层内实例聚类损失和阶层间表示区分损失,以进一步调节实例重估过程并完善类表示。我们对四个通常采用的几个基准测试:Miniimagenet,Tieredimagenet,Cifar-FS和FC100数据集进行了广泛的实验。与最先进的方法相比,实验结果证明了我们的ICRL-NET的优势。
translated by 谷歌翻译
很少的识别涉及训练图像分类器,以使用几个示例(Shot)在测试时间区分新颖概念。现有方法通常假定测试时间的射击号是事先知道的。这是不现实的,当火车和测试射击不匹配时,流行和基础方法的性能已被证明会受到影响。我们对该现象进行了系统的经验研究。与先前的工作一致,我们发现射击灵敏度在基于度量的几个学习者中广泛存在,但是与先前的工作相反,较大的神经体系结构为变化的测试拍摄提供了一定程度的内置鲁棒性。更重要的是,通过消除对样品噪声的敏感性,一种基于余弦距离的简单,以前已知但非常忽略了一类方法,可以极大地改善对射击变化的鲁​​棒性。我们为流行和最近的几个弹药分类器提供了余弦替代品,从而扩大了它们对现实环境的适用性。这些余弦模型一致地提高了射击力,超越先前的射击状态,并在一系列基准和架构上提供竞争精度,包括在非常低的射击方案中取得的显着增长。
translated by 谷歌翻译
epiSodic学习是对几枪学习感兴趣的研究人员和从业者的流行练习。它包括在一系列学习问题(或剧集)中组织培训,每个人分为小型训练和验证子集,以模仿评估期间遇到的情况。但这总是必要吗?在本文中,我们调查了在集发作的级别使用非参数方法,例如最近邻居等方法的焦点学习的有用性。对于这些方法,我们不仅展示了广州学习的限制是如何不必要的,而是他们实际上导致利用培训批次的数据低效方式。我们通过匹配和原型网络进行广泛的消融实验,其中两个最流行的方法在集中的级别使用非参数方法。他们的“非焦化”对应物具有很大的更简单,具有较少的近似参数,并在多个镜头分类数据集中提高它们的性能。
translated by 谷歌翻译
元学习已成为几乎没有图像分类的实用方法,在该方法中,“学习分类器的策略”是在标记的基础类别上进行元学习的,并且可以应用于具有新颖类的任务。我们删除了基类标签的要求,并通过无监督的元学习(UML)学习可通用的嵌入。具体而言,任务发作是在元训练过程中使用未标记的基本类别的数据增强构建的,并且我们将基于嵌入式的分类器应用于新的任务,并在元测试期间使用标记的少量示例。我们观察到两个元素在UML中扮演着重要角色,即进行样本任务和衡量实例之间的相似性的方法。因此,我们获得了具有两个简单修改的​​强基线 - 一个足够的采样策略,每情节有效地构建多个任务以及半分解的相似性。然后,我们利用来自两个方向的任务特征以获得进一步的改进。首先,合成的混淆实例被合并以帮助提取更多的判别嵌入。其次,我们利用额外的特定任务嵌入转换作为元训练期间的辅助组件,以促进预先适应的嵌入式的概括能力。几乎没有学习基准的实验证明,我们的方法比以前的UML方法优于先前的UML方法,并且比其监督变体获得了可比甚至更好的性能。
translated by 谷歌翻译
We propose prototypical networks for the problem of few-shot classification, where a classifier must generalize to new classes not seen in the training set, given only a small number of examples of each new class. Prototypical networks learn a metric space in which classification can be performed by computing distances to prototype representations of each class. Compared to recent approaches for few-shot learning, they reflect a simpler inductive bias that is beneficial in this limited-data regime, and achieve excellent results. We provide an analysis showing that some simple design decisions can yield substantial improvements over recent approaches involving complicated architectural choices and meta-learning. We further extend prototypical networks to zero-shot learning and achieve state-of-theart results on the CU-Birds dataset.
translated by 谷歌翻译
Learning with limited data is a key challenge for visual recognition. Many few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them leads to the target task. In this paper, we propose a novel approach to adapt the instance embeddings to the target classification task with a set-to-set function, yielding embeddings that are task-specific and are discriminative. We empirically investigated various instantiations of such set-to-set functions and observed the Transformer is most effective -as it naturally satisfies key properties of our desired model. We denote this model as FEAT (few-shot embedding adaptation w/ Transformer) and validate it on both the standard few-shot classification benchmark and four extended few-shot learning settings with essential use cases, i.e., cross-domain, transductive, generalized few-shot learning, and low-shot learning. It archived consistent improvements over baseline models as well as previous methods, and established the new stateof-the-art results on two benchmarks.
translated by 谷歌翻译
在过去的几年里,几年枪支学习(FSL)引起了极大的关注,以最大限度地减少标有标记的训练示例的依赖。FSL中固有的困难是处理每个课程的培训样本太少的含糊不清的歧义。为了在FSL中解决这一基本挑战,我们的目标是培训可以利用关于新颖类别的先前语义知识来引导分类器合成过程的元学习模型。特别是,我们提出了语义调节的特征注意力和样本注意机制,估计表示尺寸和培训实例的重要性。我们还研究了FSL的样本噪声问题,以便在更现实和不完美的环境中利用Meta-Meverys。我们的实验结果展示了所提出的语义FSL模型的有效性,而没有样品噪声。
translated by 谷歌翻译
在这项工作中,我们建议使用分布式样本,即来自目标类别外部的未标记样本,以改善几乎没有记录的学习。具体而言,我们利用易于可用的分布样品来驱动分类器,以避免通过最大化原型到分布样品的距离,同时最大程度地减少分布样品的距离(即支持,查询数据),以避免使用分类器。。我们的方法易于实施,不可知论的是提取器,轻量级,而没有任何额外的预训练费用,并且适用于归纳和跨传输设置。对各种标准基准测试的广泛实验表明,所提出的方法始终提高具有不同架构的预审计网络的性能。
translated by 谷歌翻译
图形广泛用于建模数据的关系结构,并且图形机器学习(ML)的研究具有广泛的应用,从分子图中的药物设计到社交网络中的友谊建议。图形ML的流行方法通常需要大量的标记实例来实现令人满意的结果,这在现实世界中通常是不可行的,因为在图形上标记了新出现的概念的数据(例如,在图形上的新分类)是有限的。尽管已将元学习应用于不同的几个图形学习问题,但大多数现有的努力主要假设所有所见类别的数据都是金标记的,而当这些方法弱标记时,这些方法可能会失去疗效严重的标签噪声。因此,我们旨在研究一个新的问题,即弱监督图元学习,以改善知识转移的模型鲁棒性。为了实现这一目标,我们提出了一个新的图形学习框架 - 本文中的图形幻觉网络(Meta-GHN)。基于一种新的鲁棒性增强的情节训练,元研究将从弱标记的数据中幻觉清洁节点表示,并提取高度可转移的元知识,这使该模型能够快速适应不见了的任务,几乎没有标记的实例。广泛的实验表明,元基因与现有图形学习研究的优越性有关弱监督的少数弹性分类的任务。
translated by 谷歌翻译
我们研究了如何在只有几个类别(几次拍摄设置)给出的一些样本时识别来自Unseen类别(开放式分类)的样本的问题。学习良好抽象的挑战是一个非常少数样本的课程使得从看不见的类别中检测样本非常困难;因此,开放式识别在少量拍摄设置中受到最小的关注。大多数开放式少量拍摄分类方法正规化SoftMax得分以表明开放类样本的均匀概率,但我们认为这种方法通常是不准确的,特别是在细粒度。相反,我们提出了一种新颖的示例性重建的元学习策略,用于共同检测开放类样本,以及通过基于度量的分类对来自观众的样本进行分类。充当类的代表的示例可以在训练数据集中提供或在特征域中估计。我们的框架,名为重建示例的基于少量拍摄的少量开放式分类器(Refofs),在各种数据集上测试,实验结果明确突出了我们作为新技术的方法。
translated by 谷歌翻译
基于班级成员之间不需要普遍或恒定的特征的共享特征模式,在自然世界中很常见,并且在一系列特征上都超过了一多裂的分类。我们表明,阈值元学习者(例如原型网络)需要一个嵌入维度,该维度在与任务相关的功能数量中指数呈指数级,以模拟这些功能。相比之下,默认情况下,注意分类器(例如匹配网络)是多真的,并且能够通过线性嵌入维度解决这些问题。但是,我们发现,在存在任务核定特征的情况下,元学习问题固有的特征,注意模型容易受到错误分类的影响。为了应对这一挑战,我们提出了一种自我注意的特征选择机制,该机制可适应非歧视性特征。我们证明了我们的方法在元学习布尔功能以及合成和现实世界中的几个学习任务中的有效性。
translated by 谷歌翻译
我们解决了几个射击开放式识别(FSOSR)问题,即在我们只有很少的标签样本的一组类中分类的实例,同时检测不属于任何已知类别的实例。偏离现有文献,我们专注于开发模型不足的推理方法,这些方法可以插入任何现有模型,无论其架构或培训程序如何。通过评估嵌入的各种模型的质量,我们量化了模型 - 敏捷FSOSR的内在难度。此外,公平的经验评估表明,在FSOSR的电感环境中,KNN检测器和原型分类器的天真组合在专业或复杂方法之前。这些观察结果促使我们诉诸于转导,这是对标准的几次学习问题的流行而实用的放松。我们介绍了一个开放的设置转导信息最大化方法OSTIM,该方法幻觉了异常原型,同时最大程度地提高了提取的特征和作业之间的相互信息。通过跨越5个数据集的广泛实验,我们表明OSTIM在检测开放式实例的同时,在与最强的托管方法竞争时,在检测开放式实例时都超过了电感和现有的转导方法。我们进一步表明,OSTIM的模型不可知论使其能够成功利用最新体系结构和培训策略的强大表现能力而没有任何超参数修改,这是一个有希望的信号,即将来临的建筑进步将继续积极影响Ostim的表现。
translated by 谷歌翻译
多标签少量拍摄图像分类(ML-FSIC)是基于少量训练示例将描述性标签分配给以前的未经看台图像的任务。多标签设置的关键特征是图像通常具有多个标签,该标签通常是指图像的不同区域。当估计原型的基于度量的设置时,重要的是确定哪些区域与哪个标签相关,但训练数据有限使得这一极具挑战性。作为一个解决方案,在本文中,我们建议使用Word Embeddings作为关于标签含义的先前知识的形式。特别地,使用依赖于标签嵌入的关注机制来聚合支持图像的本地特征映射来获得视觉原型。作为一个重要的优势,我们的模型可以在不需要微调任何模型参数的情况下推断出不必要的标签的原型,这证明了其强大的概括能力。 Coco和Pascal VOC的实验还表明,我们的模型大大提高了当前最先进的。
translated by 谷歌翻译
我们研究了很少的开放式识别(FSOR)的问题,该问题学习了一个能够快速适应新类的识别系统,具有有限的标签示例和对未知负样本的拒绝。由于数据限制,传统的大规模开放式方法对FSOR问题有效无效。当前的FSOR方法通常校准了几个弹出封闭式分类器对负样品敏感的,因此可以通过阈值拒绝它们。但是,阈值调整是一个具有挑战性的过程,因为不同的FSOR任务可能需要不同的拒绝功能。在本文中,我们提出了任务自适应的负面类别设想,以使FSOR集成阈值调整到学习过程中。具体而言,我们增加了几个封闭式分类器,并使用少量示例产生的其他负面原型。通过在负生成过程中纳入很少的类相关性,我们可以学习FSOR任务的动态拒绝边界。此外,我们将我们的方法扩展到概括的少数开放式识别(GFSOR),该识别需要在许多射击和少数类别上进行分类以及拒绝​​负样本。公共基准的广泛实验验证了我们在这两个问题上的方法。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译