深度学习的巨大进步导致了跨越众多领域的前所未有的成就。虽然深度神经网络的性能是可培制的,但这种模型的架构设计和可解释性是非竞争的。已经引入了通过神经结构搜索(NAS)自动化神经网络架构的设计。最近的进展通过利用分布式计算和新颖的优化算法,这些方法更加务实。但是,在优化架构以获得可解释性的情况下几乎没有作用。为此,我们提出了一种多目标分布式NAS框架,可针对任务性能和内省进行优化。我们利用非主导的分类遗传算法(NSGA-II)并说明可以通过人类更好地理解的造成架构的AI(XAI)技术。框架在几个图像分类数据集上进行评估。我们展示了对内省能力和任务错误的联合优化,导致更具脱屑的体系结构,可在可容忍的错误中执行。
translated by 谷歌翻译
超参数优化构成了典型的现代机器学习工作流程的很大一部分。这是由于这样一个事实,即机器学习方法和相应的预处理步骤通常只有在正确调整超参数时就会产生最佳性能。但是在许多应用中,我们不仅有兴趣仅仅为了预测精度而优化ML管道;确定最佳配置时,必须考虑其他指标或约束,从而导致多目标优化问题。由于缺乏知识和用于多目标超参数优化的知识和容易获得的软件实现,因此通常在实践中被忽略。在这项工作中,我们向读者介绍了多个客观超参数优化的基础知识,并激励其在应用ML中的实用性。此外,我们从进化算法和贝叶斯优化的领域提供了现有优化策略的广泛调查。我们说明了MOO在几个特定ML应用中的实用性,考虑了诸如操作条件,预测时间,稀疏,公平,可解释性和鲁棒性之类的目标。
translated by 谷歌翻译
Deep Learning has enabled remarkable progress over the last years on a variety of tasks, such as image recognition, speech recognition, and machine translation. One crucial aspect for this progress are novel neural architectures. Currently employed architectures have mostly been developed manually by human experts, which is a time-consuming and errorprone process. Because of this, there is growing interest in automated neural architecture search methods. We provide an overview of existing work in this field of research and categorize them according to three dimensions: search space, search strategy, and performance estimation strategy.
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
网络体系结构设计的持续进步导致了各种具有挑战性的计算机视觉任务的深入学习取得的显着成就。同时,神经体系结构搜索(NAS)的开发提供了有前途的方法来自动化网络体系结构的设计,从而获得较低的预测错误。最近,深入学习的新兴应用程序方案提高了考虑多个设计标准的网络体系结构的更高需求:参数/浮点操作的数量以及推理延迟等。从优化的角度来看,涉及多个设计标准的NAS任务是本质上多目标优化问题。因此,采用进化的多目标优化(EMO)算法来解决它们是合理的。尽管如此,仍然存在一个明显的差距,将相关研究沿着这一途径限制:一方面,从优化的角度出发,缺乏NAS任务的一般问题。另一方面,在NAS任务上对EMO算法进行基准评估存在挑战。弥合差距:(i)我们将NAS任务制定为一般的多目标优化问题,并从优化的角度分析复杂特征; (ii)我们提出了一条端到端管道,称为$ \ texttt {evoxbench} $,以生成Emo算法的基准测试问题,以有效运行 - 无需GPU或Pytorch/tensorflow; (iii)我们实例化了两个测试套件,全面涵盖了两个数据集,七个搜索空间和三个硬件设备,最多涉及八个目标。基于上述内容,我们使用六种代表性的EMO算法验证了提出的测试套件,并提供了一些经验分析。 $ \ texttt {evoxBench} $的代码可从$ \ href {https://github.com/emi-group/evoxbench} {\ rm {there}} $。
translated by 谷歌翻译
神经体系结构搜索(NAS)最近在深度学习社区中变得越来越流行,主要是因为它可以提供一个机会,使感兴趣的用户没有丰富的专业知识,从而从深度神经网络(DNNS)的成功中受益。但是,NAS仍然很费力且耗时,因为在NAS的搜索过程中需要进行大量的性能估计,并且训练DNNS在计算上是密集的。为了解决NAS的主要局限性,提高NAS的效率对于NAS的设计至关重要。本文以简要介绍了NAS的一般框架。然后,系统地讨论了根据代理指标评估网络候选者的方法。接下来是对替代辅助NAS的描述,该NAS分为三个不同类别,即NAS的贝叶斯优化,NAS的替代辅助进化算法和NAS的MOP。最后,讨论了剩余的挑战和开放研究问题,并在这个新兴领域提出了有希望的研究主题。
translated by 谷歌翻译
已经发现深层神经网络容易受到对抗攻击的影响,从而引起了对安全敏感的环境的潜在关注。为了解决这个问题,最近的研究从建筑的角度研究了深神经网络的对抗性鲁棒性。但是,搜索深神经网络的体系结构在计算上是昂贵的,尤其是当与对抗性训练过程相结合时。为了应对上述挑战,本文提出了双重主体神经体系结构搜索方法。首先,我们制定了NAS问题,以增强深度神经网络的对抗性鲁棒性为多目标优化问题。具体而言,除了低保真绩效预测器作为第一个目标外,我们还利用辅助目标 - 其值是经过高保真评估训练的替代模型的输出。其次,我们通过结合三种性能估计方法,即参数共享,低保真评估和基于替代的预测指标来降低计算成本。在CIFAR-10,CIFAR-100和SVHN数据集上进行的广泛实验证实了所提出的方法的有效性。
translated by 谷歌翻译
近年来,行业和学术界的深度学习(DL)迅速发展。但是,找到DL模型的最佳超参数通常需要高计算成本和人类专业知识。为了减轻上述问题,进化计算(EC)作为一种强大的启发式搜索方法显示出在DL模型的自动设计中,所谓的进化深度学习(EDL)具有重要优势。本文旨在从自动化机器学习(AUTOML)的角度分析EDL。具体来说,我们首先从机器学习和EC阐明EDL,并将EDL视为优化问题。根据DL管道的说法,我们系统地介绍了EDL方法,从功能工程,模型生成到具有新的分类法的模型部署(即,什么以及如何发展/优化),专注于解决方案表示和搜索范式的讨论通过EC处理优化问题。最后,提出了关键的应用程序,开放问题以及可能有希望的未来研究线。这项调查回顾了EDL的最新发展,并为EDL的开发提供了有见地的指南。
translated by 谷歌翻译
深度学习领域的最新进展表明,非常大的神经网络在几种应用中的有效性。但是,随着这些深度神经网络的大小不断增长,配置其许多参数以获得良好的结果变得越来越困难。目前,分析师必须尝试许多不同的配置和参数设置,这些配置和参数设置是劳动密集型且耗时的。另一方面,没有人类专家的领域知识,用于神经网络架构搜索的完全自动化技术的能力受到限制。为了解决问题,我们根据单次体系结构搜索技术制定神经网络体系结构优化的任务作为图形空间探索。在这种方法中,对所有候选体系结构的超级绘制进行了一次训练,并将最佳神经网络确定为子图。在本文中,我们提出了一个框架,该框架允许分析师有效地构建解决方案子图形空间,并通过注入其域知识来指导网络搜索。从由基本神经网络组件组成的网络体系结构空间开始,分析师有权通过我们的单发搜索方案有效地选择最有希望的组件。以迭代方式应用此技术使分析师可以为给定应用程序收敛到最佳性能的神经网络体系结构。在探索过程中,分析师可以利用其域知识在搜索空间的散点图可视化中提供的线索来帮助编辑不同的组件,并指导搜索更快的融合。我们与几位深度学习研究人员合作设计了界面,并通过用户研究和两个案例研究来评估其最终有效性。
translated by 谷歌翻译
The automated machine learning (AutoML) field has become increasingly relevant in recent years. These algorithms can develop models without the need for expert knowledge, facilitating the application of machine learning techniques in the industry. Neural Architecture Search (NAS) exploits deep learning techniques to autonomously produce neural network architectures whose results rival the state-of-the-art models hand-crafted by AI experts. However, this approach requires significant computational resources and hardware investments, making it less appealing for real-usage applications. This article presents the third version of Pareto-Optimal Progressive Neural Architecture Search (POPNASv3), a new sequential model-based optimization NAS algorithm targeting different hardware environments and multiple classification tasks. Our method is able to find competitive architectures within large search spaces, while keeping a flexible structure and data processing pipeline to adapt to different tasks. The algorithm employs Pareto optimality to reduce the number of architectures sampled during the search, drastically improving the time efficiency without loss in accuracy. The experiments performed on images and time series classification datasets provide evidence that POPNASv3 can explore a large set of assorted operators and converge to optimal architectures suited for the type of data provided under different scenarios.
translated by 谷歌翻译
Recently, Neural architecture search has achieved great success on classification tasks for mobile devices. The backbone network for object detection is usually obtained on the image classification task. However, the architecture which is searched through the classification task is sub-optimal because of the gap between the task of image and object detection. As while work focuses on backbone network architecture search for mobile device object detection is limited, mainly because the backbone always requires expensive ImageNet pre-training. Accordingly, it is necessary to study the approach of network architecture search for mobile device object detection without expensive pre-training. In this work, we propose a mobile object detection backbone network architecture search algorithm which is a kind of evolutionary optimized method based on non-dominated sorting for NAS scenarios. It can quickly search to obtain the backbone network architecture within certain constraints. It better solves the problem of suboptimal linear combination accuracy and computational cost. The proposed approach can search the backbone networks with different depths, widths, or expansion sizes via a technique of weight mapping, making it possible to use NAS for mobile devices detection tasks a lot more efficiently. In our experiments, we verify the effectiveness of the proposed approach on YoloX-Lite, a lightweight version of the target detection framework. Under similar computational complexity, the accuracy of the backbone network architecture we search for is 2.0% mAP higher than MobileDet. Our improved backbone network can reduce the computational effort while improving the accuracy of the object detection network. To prove its effectiveness, a series of ablation studies have been carried out and the working mechanism has been analyzed in detail.
translated by 谷歌翻译
混合精确的深神经网络达到了硬件部署所需的能源效率和吞吐量,尤其是在资源有限的情况下,而无需牺牲准确性。但是,不容易找到保留精度的最佳每层钻头精度,尤其是在创建巨大搜索空间的大量模型,数据集和量化技术中。为了解决这一困难,最近出现了一系列文献,并且已经提出了一些实现有希望的准确性结果的框架。在本文中,我们首先总结了文献中通常使用的量化技术。然后,我们对混合精液框架进行了彻底的调查,该调查是根据其优化技术进行分类的,例如增强学习和量化技术,例如确定性舍入。此外,讨论了每个框架的优势和缺点,我们在其中呈现并列。我们最终为未来的混合精液框架提供了指南。
translated by 谷歌翻译
深度神经网络中的建筑进步导致了跨越一系列计算机视觉任务的巨大飞跃。神经建筑搜索(NAS)并没有依靠人类的专业知识,而是成为自动化建筑设计的有前途的途径。尽管图像分类的最新成就提出了机会,但NAS的承诺尚未对更具挑战性的语义细分任务进行彻底评估。将NAS应用于语义分割的主要挑战来自两个方面:(i)要处理的高分辨率图像; (ii)针对自动驾驶等应用的实时推理速度(即实时语义细分)的其他要求。为了应对此类挑战,我们在本文中提出了一种替代辅助的多目标方法。通过一系列自定义预测模型,我们的方法有效地将原始的NAS任务转换为普通的多目标优化问题。然后是用于填充选择的层次预筛选标准,我们的方法逐渐实现了一组有效的体系结构在细分精度和推理速度之间进行交易。对三个基准数据集的经验评估以及使用华为地图集200 dk的应用程序的实证评估表明,我们的方法可以识别架构明显优于人类专家手动设计和通过其他NAS方法自动设计的现有最先进的体系结构。
translated by 谷歌翻译
HyperParameter Optimization(HPO)是一种确保机器学习(ML)算法最佳性能的必要步骤。已经开发了几种方法来执行HPO;其中大部分都集中在优化一个性能措施(通常是基于错误的措施),并且在这种单一目标HPO问题上的文献是巨大的。然而,最近似乎似乎侧重于同时优化多个冲突目标的算法。本文提出了对2014年至2020年的文献的系统调查,在多目标HPO算法上发布,区分了基于成逐的算法,Metamodel的算法以及使用两者混合的方法。我们还讨论了用于比较多目标HPO程序和今后的研究方向的质量指标。
translated by 谷歌翻译
In the past few years, neural architecture search (NAS) has become an increasingly important tool within the deep learning community. Despite the many recent successes of NAS, however, most existing approaches operate within highly structured design spaces, and hence explore only a small fraction of the full search space of neural architectures while also requiring significant manual effort from domain experts. In this work, we develop techniques that enable efficient NAS in a significantly larger design space. To accomplish this, we propose to perform NAS in an abstract search space of program properties. Our key insights are as follows: (1) the abstract search space is significantly smaller than the original search space, and (2) architectures with similar program properties also have similar performance; thus, we can search more efficiently in the abstract search space. To enable this approach, we also propose a novel efficient synthesis procedure, which accepts a set of promising program properties, and returns a satisfying neural architecture. We implement our approach, $\alpha$NAS, within an evolutionary framework, where the mutations are guided by the program properties. Starting with a ResNet-34 model, $\alpha$NAS produces a model with slightly improved accuracy on CIFAR-10 but 96% fewer parameters. On ImageNet, $\alpha$NAS is able to improve over Vision Transformer (30% fewer FLOPS and parameters), ResNet-50 (23% fewer FLOPS, 14% fewer parameters), and EfficientNet (7% fewer FLOPS and parameters) without any degradation in accuracy.
translated by 谷歌翻译
Recent advances in neural architecture search (NAS) demand tremendous computational resources, which makes it difficult to reproduce experiments and imposes a barrier-to-entry to researchers without access to large-scale computation. We aim to ameliorate these problems by introducing NAS-Bench-101, the first public architecture dataset for NAS research. To build NAS-Bench-101, we carefully constructed a compact, yet expressive, search space, exploiting graph isomorphisms to identify 423k unique convolutional architectures. We trained and evaluated all of these architectures multiple times on CIFAR-10 and compiled the results into a large dataset of over 5 million trained models. This allows researchers to evaluate the quality of a diverse range of models in milliseconds by querying the precomputed dataset. We demonstrate its utility by analyzing the dataset as a whole and by benchmarking a range of architecture optimization algorithms.
translated by 谷歌翻译
由于计算成本和能耗有限,部署在移动设备中的大多数神经网络模型都很小。然而,微小的神经网络通常很容易攻击。目前的研究证明,较大的模型规模可以提高鲁棒性,但很少的研究侧重于如何增强微小神经网络的稳健性。我们的工作侧重于如何改善微小神经网络的稳健性,而不会严重恶化移动级资源下的清洁准确性。为此,我们提出了一种多目标oneShot网络架构搜索(NAS)算法,以便在对抗准确度,清洁精度和模型尺寸方面获得最佳权衡网络。具体而言,我们基于新的微小块和通道设计一种新的搜索空间,以平衡模型大小和对抗性能。此外,由于SUPERNET显着影响了我们NAS算法中子网的性能,因此我们揭示了对SuperNet如何有助于获得白盒对抗攻击下最好的子网的洞察力。具体地,我们通过分析对抗性可转移性,超空网的宽度以及从头划痕和微调训练子网之间的差异来探索新的对抗性培训范式。最后,我们对第一个非主导的前沿的某些块和通道的层面组合进行了统计分析,这可以作为设计微小神经网络架构以实现对抗性扰动的指导。
translated by 谷歌翻译
We propose a new method for learning the structure of convolutional neural networks (CNNs) that is more efficient than recent state-of-the-art methods based on reinforcement learning and evolutionary algorithms. Our approach uses a sequential model-based optimization (SMBO) strategy, in which we search for structures in order of increasing complexity, while simultaneously learning a surrogate model to guide the search through structure space. Direct comparison under the same search space shows that our method is up to 5 times more efficient than the RL method of Zoph et al. (2018) in terms of number of models evaluated, and 8 times faster in terms of total compute. The structures we discover in this way achieve state of the art classification accuracies on CIFAR-10 and ImageNet.
translated by 谷歌翻译
尽管人工神经网络(ANN)取得了重大进展,但其设计过程仍在臭名昭著,这主要取决于直觉,经验和反复试验。这个依赖人类的过程通常很耗时,容易出现错误。此外,这些模型通常与其训练环境绑定,而没有考虑其周围环境的变化。神经网络的持续适应性和自动化对于部署后模型可访问性的几个领域至关重要(例如,IoT设备,自动驾驶汽车等)。此外,即使是可访问的模型,也需要频繁的维护后部署后,以克服诸如概念/数据漂移之类的问题,这可能是繁琐且限制性的。当前关于自适应ANN的艺术状况仍然是研究的过早领域。然而,一种自动化和持续学习形式的神经体系结构搜索(NAS)最近在深度学习研究领域中获得了越来越多的动力,旨在提供更强大和适应性的ANN开发框架。这项研究是关于汽车和CL之间交集的首次广泛综述,概述了可以促进ANN中充分自动化和终身可塑性的不同方法的研究方向。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译