网络体系结构设计的持续进步导致了各种具有挑战性的计算机视觉任务的深入学习取得的显着成就。同时,神经体系结构搜索(NAS)的开发提供了有前途的方法来自动化网络体系结构的设计,从而获得较低的预测错误。最近,深入学习的新兴应用程序方案提高了考虑多个设计标准的网络体系结构的更高需求:参数/浮点操作的数量以及推理延迟等。从优化的角度来看,涉及多个设计标准的NAS任务是本质上多目标优化问题。因此,采用进化的多目标优化(EMO)算法来解决它们是合理的。尽管如此,仍然存在一个明显的差距,将相关研究沿着这一途径限制:一方面,从优化的角度出发,缺乏NAS任务的一般问题。另一方面,在NAS任务上对EMO算法进行基准评估存在挑战。弥合差距:(i)我们将NAS任务制定为一般的多目标优化问题,并从优化的角度分析复杂特征; (ii)我们提出了一条端到端管道,称为$ \ texttt {evoxbench} $,以生成Emo算法的基准测试问题,以有效运行 - 无需GPU或Pytorch/tensorflow; (iii)我们实例化了两个测试套件,全面涵盖了两个数据集,七个搜索空间和三个硬件设备,最多涉及八个目标。基于上述内容,我们使用六种代表性的EMO算法验证了提出的测试套件,并提供了一些经验分析。 $ \ texttt {evoxBench} $的代码可从$ \ href {https://github.com/emi-group/evoxbench} {\ rm {there}} $。
translated by 谷歌翻译
深度神经网络中的建筑进步导致了跨越一系列计算机视觉任务的巨大飞跃。神经建筑搜索(NAS)并没有依靠人类的专业知识,而是成为自动化建筑设计的有前途的途径。尽管图像分类的最新成就提出了机会,但NAS的承诺尚未对更具挑战性的语义细分任务进行彻底评估。将NAS应用于语义分割的主要挑战来自两个方面:(i)要处理的高分辨率图像; (ii)针对自动驾驶等应用的实时推理速度(即实时语义细分)的其他要求。为了应对此类挑战,我们在本文中提出了一种替代辅助的多目标方法。通过一系列自定义预测模型,我们的方法有效地将原始的NAS任务转换为普通的多目标优化问题。然后是用于填充选择的层次预筛选标准,我们的方法逐渐实现了一组有效的体系结构在细分精度和推理速度之间进行交易。对三个基准数据集的经验评估以及使用华为地图集200 dk的应用程序的实证评估表明,我们的方法可以识别架构明显优于人类专家手动设计和通过其他NAS方法自动设计的现有最先进的体系结构。
translated by 谷歌翻译
神经体系结构搜索(NAS)最近在深度学习社区中变得越来越流行,主要是因为它可以提供一个机会,使感兴趣的用户没有丰富的专业知识,从而从深度神经网络(DNNS)的成功中受益。但是,NAS仍然很费力且耗时,因为在NAS的搜索过程中需要进行大量的性能估计,并且训练DNNS在计算上是密集的。为了解决NAS的主要局限性,提高NAS的效率对于NAS的设计至关重要。本文以简要介绍了NAS的一般框架。然后,系统地讨论了根据代理指标评估网络候选者的方法。接下来是对替代辅助NAS的描述,该NAS分为三个不同类别,即NAS的贝叶斯优化,NAS的替代辅助进化算法和NAS的MOP。最后,讨论了剩余的挑战和开放研究问题,并在这个新兴领域提出了有希望的研究主题。
translated by 谷歌翻译
超参数优化构成了典型的现代机器学习工作流程的很大一部分。这是由于这样一个事实,即机器学习方法和相应的预处理步骤通常只有在正确调整超参数时就会产生最佳性能。但是在许多应用中,我们不仅有兴趣仅仅为了预测精度而优化ML管道;确定最佳配置时,必须考虑其他指标或约束,从而导致多目标优化问题。由于缺乏知识和用于多目标超参数优化的知识和容易获得的软件实现,因此通常在实践中被忽略。在这项工作中,我们向读者介绍了多个客观超参数优化的基础知识,并激励其在应用ML中的实用性。此外,我们从进化算法和贝叶斯优化的领域提供了现有优化策略的广泛调查。我们说明了MOO在几个特定ML应用中的实用性,考虑了诸如操作条件,预测时间,稀疏,公平,可解释性和鲁棒性之类的目标。
translated by 谷歌翻译
近年来,行业和学术界的深度学习(DL)迅速发展。但是,找到DL模型的最佳超参数通常需要高计算成本和人类专业知识。为了减轻上述问题,进化计算(EC)作为一种强大的启发式搜索方法显示出在DL模型的自动设计中,所谓的进化深度学习(EDL)具有重要优势。本文旨在从自动化机器学习(AUTOML)的角度分析EDL。具体来说,我们首先从机器学习和EC阐明EDL,并将EDL视为优化问题。根据DL管道的说法,我们系统地介绍了EDL方法,从功能工程,模型生成到具有新的分类法的模型部署(即,什么以及如何发展/优化),专注于解决方案表示和搜索范式的讨论通过EC处理优化问题。最后,提出了关键的应用程序,开放问题以及可能有希望的未来研究线。这项调查回顾了EDL的最新发展,并为EDL的开发提供了有见地的指南。
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
深度学习的巨大进步导致了跨越众多领域的前所未有的成就。虽然深度神经网络的性能是可培制的,但这种模型的架构设计和可解释性是非竞争的。已经引入了通过神经结构搜索(NAS)自动化神经网络架构的设计。最近的进展通过利用分布式计算和新颖的优化算法,这些方法更加务实。但是,在优化架构以获得可解释性的情况下几乎没有作用。为此,我们提出了一种多目标分布式NAS框架,可针对任务性能和内省进行优化。我们利用非主导的分类遗传算法(NSGA-II)并说明可以通过人类更好地理解的造成架构的AI(XAI)技术。框架在几个图像分类数据集上进行评估。我们展示了对内省能力和任务错误的联合优化,导致更具脱屑的体系结构,可在可容忍的错误中执行。
translated by 谷歌翻译
HyperParameter Optimization(HPO)是一种确保机器学习(ML)算法最佳性能的必要步骤。已经开发了几种方法来执行HPO;其中大部分都集中在优化一个性能措施(通常是基于错误的措施),并且在这种单一目标HPO问题上的文献是巨大的。然而,最近似乎似乎侧重于同时优化多个冲突目标的算法。本文提出了对2014年至2020年的文献的系统调查,在多目标HPO算法上发布,区分了基于成逐的算法,Metamodel的算法以及使用两者混合的方法。我们还讨论了用于比较多目标HPO程序和今后的研究方向的质量指标。
translated by 谷歌翻译
最近几十年来,已经采用了用于解决各种多主体优化问题(MOPS)的多主体进化算法(MOEAS)的显着进步。但是,这些逐渐改善的MOEAS并不一定配备了精致的可扩展和可学习的解决问题的策略,这些策略能够应对缩放型拖把带来的新的和宏伟的挑战,并不断提高各种方面的复杂性或规模,主要包括昂贵的方面,包括昂贵的方面。功能评估,许多目标,大规模搜索空间,时变环境和多任务。在不同的情况下,它需要不同的思考来设计新的强大MOEAS,以有效地解决它们。在这种情况下,对可学习的MOEAS进行的研究,以机器学习技术进行缩放的拖把,在进化计算领域受到了广泛的关注。在本文中,我们从可扩展的拖把和可学习的MOEAS的分类学开始,然后分析将拖把构成对传统MOEAS的挑战的分析。然后,我们综合概述了可学习的MOEAS的最新进展,以求解各种扩展拖把,主要集中在三个有吸引力的有前途的方向上(即,可学习的环境选择的可学习的进化鉴别器,可学习的进化生物的可学习生殖发生器,以及可学习的进化转移,用于分享或分享或分享或进行分享或可学习的转移。不同问题域之间的经验)。在本文中提供了有关可学习的MOEAS的见解,以参考该领域的努力的一般踪迹。
translated by 谷歌翻译
已经发现深层神经网络容易受到对抗攻击的影响,从而引起了对安全敏感的环境的潜在关注。为了解决这个问题,最近的研究从建筑的角度研究了深神经网络的对抗性鲁棒性。但是,搜索深神经网络的体系结构在计算上是昂贵的,尤其是当与对抗性训练过程相结合时。为了应对上述挑战,本文提出了双重主体神经体系结构搜索方法。首先,我们制定了NAS问题,以增强深度神经网络的对抗性鲁棒性为多目标优化问题。具体而言,除了低保真绩效预测器作为第一个目标外,我们还利用辅助目标 - 其值是经过高保真评估训练的替代模型的输出。其次,我们通过结合三种性能估计方法,即参数共享,低保真评估和基于替代的预测指标来降低计算成本。在CIFAR-10,CIFAR-100和SVHN数据集上进行的广泛实验证实了所提出的方法的有效性。
translated by 谷歌翻译
机器学习系统的设计通常需要交易不同的目标,例如,深度神经网络(DNN)的预测错误和能耗。通常,没有任何单一的设计在所有目标中都表现良好,因此,找到帕累托最佳的设计令人感兴趣。通常,测量不同的目标会产生不同的成本;例如,测量DNN的预测误差的成本比测量预先训练的DNN的能源消耗的数量级高,因为它需要重新训练DNN。当前的最新方法没有考虑到客观评估成本的这种差异,可能会浪费对目标功能的昂贵评估,从而获得很少的信息增益。在本文中,我们开发了一种新颖的分离成本感知方法,我们称为灵活的多目标贝叶斯优化(Flexibo)来解决此问题。 Flexibo通过每个目标的测量成本来加权帕累托区的超量。这有助于我们平衡收集新信息与通过客观评估获得的知识的费用,从而阻止我们几乎没有收益进行昂贵的测量。我们在七个最先进的DNN上评估了图像识别,自然语言处理(NLP)和语音到文本翻译的Flexibo。我们的结果表明,鉴于相同的总实验预算,Flexibo发现的设计比下一个最佳最佳多目标优化方法低4.8%至12.4%,具体取决于特定的DNN体系结构。
translated by 谷歌翻译
Dynamic neural networks (DyNNs) have become viable techniques to enable intelligence on resource-constrained edge devices while maintaining computational efficiency. In many cases, the implementation of DyNNs can be sub-optimal due to its underlying backbone architecture being developed at the design stage independent of both: (i) the dynamic computing features, e.g. early exiting, and (ii) the resource efficiency features of the underlying hardware, e.g., dynamic voltage and frequency scaling (DVFS). Addressing this, we present HADAS, a novel Hardware-Aware Dynamic Neural Architecture Search framework that realizes DyNN architectures whose backbone, early exiting features, and DVFS settings have been jointly optimized to maximize performance and resource efficiency. Our experiments using the CIFAR-100 dataset and a diverse set of edge computing platforms have seen HADAS dynamic models achieve up to 57% energy efficiency gains compared to the conventional dynamic ones while maintaining the desired level of accuracy scores. Our code is available at https://github.com/HalimaBouzidi/HADAS
translated by 谷歌翻译
深神经网络(DNNS)在各种机器学习(ML)应用程序中取得了巨大成功,在计算机视觉,自然语言处理和虚拟现实等中提供了高质量的推理解决方案。但是,基于DNN的ML应用程序也带来计算和存储要求的增加了很多,对于具有有限的计算/存储资源,紧张的功率预算和较小形式的嵌入式系统而言,这尤其具有挑战性。挑战还来自各种特定应用的要求,包括实时响应,高通量性能和可靠的推理准确性。为了应对这些挑战,我们介绍了一系列有效的设计方法,包括有效的ML模型设计,定制的硬件加速器设计以及硬件/软件共同设计策略,以启用嵌入式系统上有效的ML应用程序。
translated by 谷歌翻译
多目标优化问题的目标在现实世界中通常会看到不同的评估成本。现在,此类问题被称为异质目标(HE-MOPS)的多目标优化问题。然而,到目前为止,只有少数研究来解决HE-MOPS,其中大多数专注于一个快速目标和一个缓慢目标的双向目标问题。在这项工作中,我们旨在应对具有两个以上黑盒和异质目标的He-mops。为此,我们通过利用He-Mops中廉价且昂贵的目标的不同数据集来减轻因评估不同目标而导致的搜索偏见,从而减轻了廉价且昂贵的目标,从而为HE-MOPS开发了多目标贝叶斯进化优化方法。为了充分利用两个不同的培训数据集,一种对所有目标进行评估的解决方案,另一个与仅在快速目标上进行评估的解决方案,构建了两个单独的高斯过程模型。此外,提出了一种新的采集函数,以减轻对快速目标的搜索偏见,从而在收敛与多样性之间达到平衡。我们通过对广泛使用的多/多目标基准问题进行测试来证明该算法的有效性,这些问题被认为是异质昂贵的。
translated by 谷歌翻译
在多目标优化中,一组具有各种功能的可扩展测试问题使研究人员可以调查和评估不同优化算法的能力,因此可以帮助他们设计和开发更有效,更有效的方法。现有的测试问题套件主要集中在所有目标彼此完全冲突的情况下。在这种情况下,目标空间中的M-Obigntive优化问题具有(M-1)维帕累托前沿。但是,在某些优化问题中,目标之间可能存在意外的特征,例如冗余。某些目标的冗余可能会导致具有堕落的帕累托正面的多物镜问题,即,$ m $ - 目标问题的帕累托正面的尺寸小于(M-1)。在本文中,我们系统地研究了退化的多目标问题。我们抽象了退化问题的三个一般特征,这些特征未在文献中进行制定和系统地研究。基于这些特征,我们提出了一组测试问题,以支持在具有冗余目标的情况下对多目标优化算法进行研究。据我们所知,这项工作是第一项明确提出退化问题的三个特征,从而使所得的测试问题的一般性具有一般性的特征,与为特定目的设计的现有测试问题相比(例如,可视化),则允许所得的测试问题。 )。
translated by 谷歌翻译
随着神经体系结构搜索方法的发展,手动设计的深度神经网络(随着模型的复杂性升级)即使更快地升级 - 研究趋势朝着安排不同且通常越来越复杂的神经体系结构搜索空间的趋势。在这种结合中,可以有效探索这些搜索空间的描述算法可能会导致对当前使用的方法的重大改进,通常,这些方法随机选择结构变化操作员,希望能够获得性能增长。在本文中,我们研究了复杂域中不同变异算子的效果,即多网络异质神经模型的效果。这些模型具有结构的广泛而复杂的搜索空间,因为它们需要一般模型中的多个子网络,以便回答不同的输出类型。从该调查中,我们提取一组通用准则,其应用不限于该特定类型的模型,并且有助于确定架构优化方法可以找到最大改进的方向。为了推断一组准则,我们根据模型的复杂性和性能的影响来表征它们的变化操作员。这些模型依赖于各种指标,这些指标估算了组成它的不同部分的质量。
translated by 谷歌翻译
卷积神经网络(CNNS)用于许多现实世界应用,例如基于视觉的自主驾驶和视频内容分析。要在各种目标设备上运行CNN推断,硬件感知神经结构搜索(NAS)至关重要。有效的硬件感知NAS的关键要求是对推理延迟的快速评估,以便对不同的架构进行排名。在构建每个目标设备的延迟预测器的同时,在本领域中通常使用,这是一个非常耗时的过程,在极定的设备存在下缺乏可扩展性。在这项工作中,我们通过利用延迟单调性来解决可扩展性挑战 - 不同设备上的架构延迟排名通常相关。当存在强烈的延迟单调性时,我们可以重复使用在新目标设备上搜索一个代理设备的架构,而不会丢失最佳状态。在没有强烈的延迟单调性的情况下,我们提出了一种有效的代理适应技术,以显着提高延迟单调性。最后,我们验证了我们的方法,并在多个主流搜索空间上使用不同平台的设备进行实验,包括MobileNet-V2,MobileNet-V3,NAS-Bench-201,Proxylessnas和FBNet。我们的结果突出显示,通过仅使用一个代理设备,我们可以找到几乎与现有的每个设备NAS相同的帕累托最优架构,同时避免为每个设备构建延迟预测器的禁止成本。 github:https://github.com/ren-research/oneproxy.
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
神经体系结构搜索(NAS)可以自动为深神经网络(DNN)设计架构,并已成为当前机器学习社区中最热门的研究主题之一。但是,NAS通常在计算上很昂贵,因为在搜索过程中需要培训大量DNN。绩效预测因素可以通过直接预测DNN的性能来大大减轻NAS的过失成本。但是,构建令人满意的性能预测能力很大程度上取决于足够的训练有素的DNN体系结构,在大多数情况下很难获得。为了解决这个关键问题,我们在本文中提出了一种名为Giaug的有效的DNN体系结构增强方法。具体而言,我们首先提出了一种基于图同构的机制,其优点是有效地生成$ \ boldsymbol n $(即$ \ boldsymbol n!$)的阶乘,对具有$ \ boldsymbol n $ n $ n $ n $ \ boldsymbol n $的单个体系结构进行了带注释的体系结构节点。此外,我们还设计了一种通用方法,将体系结构编码为适合大多数预测模型的形式。结果,可以通过各种基于性能预测因子的NAS算法灵活地利用Giaug。我们在中小型,中,大规模搜索空间上对CIFAR-10和Imagenet基准数据集进行了广泛的实验。实验表明,Giaug可以显着提高大多数最先进的同伴预测因子的性能。此外,与最先进的NAS算法相比,Giaug最多可以在ImageNet上节省三级计算成本。
translated by 谷歌翻译
由于其数据效率,贝叶斯优化已经出现在昂贵的黑盒优化的最前沿。近年来,关于新贝叶斯优化算法及其应用的发展的研究激增。因此,本文试图对贝叶斯优化的最新进展进行全面和更新的调查,并确定有趣的开放问题。我们将贝叶斯优化的现有工作分为九个主要群体,并根据所提出的算法的动机和重点。对于每个类别,我们介绍了替代模型的构建和采集功能的适应的主要进步。最后,我们讨论了开放的问题,并提出了有希望的未来研究方向,尤其是在分布式和联合优化系统中的异质性,隐私保护和公平性方面。
translated by 谷歌翻译