Recently, Neural architecture search has achieved great success on classification tasks for mobile devices. The backbone network for object detection is usually obtained on the image classification task. However, the architecture which is searched through the classification task is sub-optimal because of the gap between the task of image and object detection. As while work focuses on backbone network architecture search for mobile device object detection is limited, mainly because the backbone always requires expensive ImageNet pre-training. Accordingly, it is necessary to study the approach of network architecture search for mobile device object detection without expensive pre-training. In this work, we propose a mobile object detection backbone network architecture search algorithm which is a kind of evolutionary optimized method based on non-dominated sorting for NAS scenarios. It can quickly search to obtain the backbone network architecture within certain constraints. It better solves the problem of suboptimal linear combination accuracy and computational cost. The proposed approach can search the backbone networks with different depths, widths, or expansion sizes via a technique of weight mapping, making it possible to use NAS for mobile devices detection tasks a lot more efficiently. In our experiments, we verify the effectiveness of the proposed approach on YoloX-Lite, a lightweight version of the target detection framework. Under similar computational complexity, the accuracy of the backbone network architecture we search for is 2.0% mAP higher than MobileDet. Our improved backbone network can reduce the computational effort while improving the accuracy of the object detection network. To prove its effectiveness, a series of ablation studies have been carried out and the working mechanism has been analyzed in detail.
translated by 谷歌翻译
神经结构搜索(NAS)引起了日益增长的兴趣。为了降低搜索成本,最近的工作已经探讨了模型的重量分享,并在单枪NAS进行了重大进展。然而,已经观察到,单次模型精度较高的模型并不一定在独立培训时更好地执行更好。为了解决这个问题,本文提出了搜索空间的逐步自动设计,名为Pad-NAS。与超字幕中的所有层共享相同操作搜索空间的先前方法不同,我们根据操作修剪制定逐行搜索策略,并构建层面操作搜索空间。通过这种方式,Pad-NAS可以自动设计每层的操作,并在搜索空间质量和模型分集之间实现权衡。在搜索过程中,我们还考虑了高效神经网络模型部署的硬件平台约束。关于Imagenet的广泛实验表明我们的方法可以实现最先进的性能。
translated by 谷歌翻译
大多数对象检测框架都使用最初设计用于图像分类的主链体系结构,通常在Imagenet上具有预训练的参数。但是,图像分类和对象检测本质上是不同的任务,并且不能保证分类的最佳主链也适用于对象检测。最近的神经体系结构搜索(NAS)研究表明,自动设计专门用于对象检测的骨干有助于提高整体准确性。在本文中,我们引入了一种神经体系结构适应方法,该方法可以优化给定的主链以进行检测目的,同时仍允许使用预训练的参数。我们建议除了每个块的输出通道尺寸外,还通过搜索特定操作和层数来调整微体系结构。重要的是要找到最佳的通道深度,因为它极大地影响了特征表示功能和计算成本。我们使用搜索的主链进行对象检测进行实验,并证明我们的主链在可可数据集上的手动设计和搜索的最新骨干均优于手动设计和搜索的骨干。
translated by 谷歌翻译
深度神经网络中的建筑进步导致了跨越一系列计算机视觉任务的巨大飞跃。神经建筑搜索(NAS)并没有依靠人类的专业知识,而是成为自动化建筑设计的有前途的途径。尽管图像分类的最新成就提出了机会,但NAS的承诺尚未对更具挑战性的语义细分任务进行彻底评估。将NAS应用于语义分割的主要挑战来自两个方面:(i)要处理的高分辨率图像; (ii)针对自动驾驶等应用的实时推理速度(即实时语义细分)的其他要求。为了应对此类挑战,我们在本文中提出了一种替代辅助的多目标方法。通过一系列自定义预测模型,我们的方法有效地将原始的NAS任务转换为普通的多目标优化问题。然后是用于填充选择的层次预筛选标准,我们的方法逐渐实现了一组有效的体系结构在细分精度和推理速度之间进行交易。对三个基准数据集的经验评估以及使用华为地图集200 dk的应用程序的实证评估表明,我们的方法可以识别架构明显优于人类专家手动设计和通过其他NAS方法自动设计的现有最先进的体系结构。
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
最近,已经成功地应用于各种遥感图像(RSI)识别任务的大量基于深度学习的方法。然而,RSI字段中深度学习方法的大多数现有进步严重依赖于手动设计的骨干网络提取的特征,这严重阻碍了由于RSI的复杂性以及先前知识的限制而受到深度学习模型的潜力。在本文中,我们研究了RSI识别任务中的骨干架构的新设计范式,包括场景分类,陆地覆盖分类和对象检测。提出了一种基于权重共享策略和进化算法的一拍架构搜索框架,称为RSBNet,其中包括三个阶段:首先,在层面搜索空间中构造的超空网是在自组装的大型中预先磨削 - 基于集合单路径培训策略进行缩放RSI数据集。接下来,预先培训的SuperNet通过可切换识别模块配备不同的识别头,并分别在目标数据集上进行微调,以获取特定于任务特定的超网络。最后,我们根据没有任何网络训练的进化算法,搜索最佳骨干架构进行不同识别任务。对于不同识别任务的五个基准数据集进行了广泛的实验,结果显示了所提出的搜索范例的有效性,并证明搜索后的骨干能够灵活地调整不同的RSI识别任务并实现令人印象深刻的性能。
translated by 谷歌翻译
在对象检测模型中,检测骨干机消耗超过一半的整体推理成本。最近的研究试图通过在神经结构搜索(NAS)的帮助下优化骨干架构来降低这一成本。然而,对象检测的现有NAS方法需要数百至数千个GPU小时的搜索,使它们在快节奏的研究和开发中不切实际。在这项工作中,我们提出了一种新的零射NAS方法来解决这个问题。所提出的方法,命名为Zendet,在不训练网络参数的情况下自动设计有效的检测骨干网,从而降低了架构设计成本,几乎归零但提供了最先进的(SOTA)性能。在引擎盖下,Zendet最大化了检测骨干的差分熵,导致对象检测的更好的特征提取器,在相同的计算预算下。在仅为全自动设计的一个GPU日之后,Zendet在多个检测基准数据集上创新了SOTA检测骨干,具有很少的人为干预。与Reset-50个骨干相比,Zendet在Map中使用相同数量的拖波/参数时更好地+ 2.0%,并且在同一地图上的NVIDIA V100速度快1.54倍。稍后将发布代码和预先训练的型号。
translated by 谷歌翻译
神经体系结构搜索(NAS)最近在深度学习社区中变得越来越流行,主要是因为它可以提供一个机会,使感兴趣的用户没有丰富的专业知识,从而从深度神经网络(DNNS)的成功中受益。但是,NAS仍然很费力且耗时,因为在NAS的搜索过程中需要进行大量的性能估计,并且训练DNNS在计算上是密集的。为了解决NAS的主要局限性,提高NAS的效率对于NAS的设计至关重要。本文以简要介绍了NAS的一般框架。然后,系统地讨论了根据代理指标评估网络候选者的方法。接下来是对替代辅助NAS的描述,该NAS分为三个不同类别,即NAS的贝叶斯优化,NAS的替代辅助进化算法和NAS的MOP。最后,讨论了剩余的挑战和开放研究问题,并在这个新兴领域提出了有希望的研究主题。
translated by 谷歌翻译
Designing convolutional neural networks (CNN) for mobile devices is challenging because mobile models need to be small and fast, yet still accurate. Although significant efforts have been dedicated to design and improve mobile CNNs on all dimensions, it is very difficult to manually balance these trade-offs when there are so many architectural possibilities to consider. In this paper, we propose an automated mobile neural architecture search (MNAS) approach, which explicitly incorporate model latency into the main objective so that the search can identify a model that achieves a good trade-off between accuracy and latency. Unlike previous work, where latency is considered via another, often inaccurate proxy (e.g., FLOPS), our approach directly measures real-world inference latency by executing the model on mobile phones. To further strike the right balance between flexibility and search space size, we propose a novel factorized hierarchical search space that encourages layer diversity throughout the network. Experimental results show that our approach consistently outperforms state-of-the-art mobile CNN models across multiple vision tasks. On the ImageNet classification task, our MnasNet achieves 75.2% top-1 accuracy with 78ms latency on a Pixel phone, which is 1.8× faster than MobileNetV2 [29] with 0.5% higher accuracy and 2.3× faster than NASNet [36] with 1.2% higher accuracy. Our MnasNet also achieves better mAP quality than MobileNets for COCO object detection. Code is at https://github.com/tensorflow/tpu/ tree/master/models/official/mnasnet.
translated by 谷歌翻译
在卫星布局设计中,热源布局优化(HSLO)是一种有效的技术,可降低最高温度并改善整个系统的热量管理。最近,已经提出了深度学习的替代辅助HSLO,该辅助辅助HSLO从布局到相应的温度场进行了映射,以便在优化过程中替换仿真以大大降低计算成本。但是,它面临两个主要挑战:1)特定任务的神经网络代理通常是手动设计的,这是复杂的,需要丰富的调试经验,这对工程领域的设计师来说是具有挑战性的; 2)现有的HSLO算法只能在单个优化中获得几乎最佳的解决方案,并且很容易被捕获以局部最佳限制。为了应对第一个挑战,考虑减少总参数编号并确保相似的准确性以及与特征金字塔网络(FPN)框架相结合的神经体系结构搜索(NAS)方法,以实现自动搜索小型搜索的目的深度学习的替代模型。为了应对第二项挑战,提出了一种基于多模式搜索的布局优化算法(MNSLO),该算法(MNSLO)可以单一优化同时获得更多,更好的近似最佳设计方案。最后,利用了两个典型的二维热传导优化问题来证明该方法的有效性。具有相似的精度,NAS找到了比原始FPN的参数少80%,拖失板少64%和36%的模型。此外,在自动搜索的深度学习代理人的帮助下,MNSLO可以同时实现多个接近最佳的设计方案,以为设计师提供更多的设计多样性。
translated by 谷歌翻译
在过去几年中,已经制作了神经结构搜索领域的显着改进。然而,由于存在搜索的约束和实际推断时间之间的间隙,搜索有效网络仍然具有挑战性。为了搜索具有低推理时间的高性能网络,若干以前的作品为搜索算法设置了计算复杂性约束。然而,许多因素影响推理的速度(例如,拖鞋,MAC)。单个指示符与延迟之间的相关性并不强。目前,提出了一些重新参数化(REP)技术将多分支转换为对单路径架构进行推断友好的。然而,多分支架构仍然是人为定义和效率低下。在这项工作中,我们提出了一种适用于结构重新参数化技术的新搜索空间。 repnas是一种单级NAS方法,以便在分支号约束下有效地搜索每个层的最佳分支块(ODBB)。我们的实验结果表明,搜索的ODBB可以轻松超越手动各种分支块(DBB),高效培训。代码和型号将越早提供。
translated by 谷歌翻译
由于计算成本和能耗有限,部署在移动设备中的大多数神经网络模型都很小。然而,微小的神经网络通常很容易攻击。目前的研究证明,较大的模型规模可以提高鲁棒性,但很少的研究侧重于如何增强微小神经网络的稳健性。我们的工作侧重于如何改善微小神经网络的稳健性,而不会严重恶化移动级资源下的清洁准确性。为此,我们提出了一种多目标oneShot网络架构搜索(NAS)算法,以便在对抗准确度,清洁精度和模型尺寸方面获得最佳权衡网络。具体而言,我们基于新的微小块和通道设计一种新的搜索空间,以平衡模型大小和对抗性能。此外,由于SUPERNET显着影响了我们NAS算法中子网的性能,因此我们揭示了对SuperNet如何有助于获得白盒对抗攻击下最好的子网的洞察力。具体地,我们通过分析对抗性可转移性,超空网的宽度以及从头划痕和微调训练子网之间的差异来探索新的对抗性培训范式。最后,我们对第一个非主导的前沿的某些块和通道的层面组合进行了统计分析,这可以作为设计微小神经网络架构以实现对抗性扰动的指导。
translated by 谷歌翻译
更好的准确性和效率权衡在对象检测中是一个具有挑战性的问题。在这项工作中,我们致力于研究对象检测的关键优化和神经网络架构选择,以提高准确性和效率。我们调查了无锚策略对轻质对象检测模型的适用性。我们增强了骨干结构并设计了颈部的轻质结构,从而提高了网络的特征提取能力。我们改善标签分配策略和损失功能,使培训更稳定和高效。通过这些优化,我们创建了一个名为PP-Picodet的新的实时对象探测器系列,这在移动设备的对象检测上实现了卓越的性能。与其他流行型号相比,我们的模型在准确性和延迟之间实现了更好的权衡。 Picodet-s只有0.99m的参数达到30.6%的地图,它是地图的绝对4.8%,同时与yolox-nano相比将移动CPU推理延迟减少55%,并且与Nanodet相比,MAP的绝对改善了7.1%。当输入大小为320时,它在移动臂CPU上达到123个FPS(使用桨Lite)。Picodet-L只有3.3M参数,达到40.9%的地图,这是地图的绝对3.7%,比yolov5s更快44% 。如图1所示,我们的模型远远优于轻量级对象检测的最先进的结果。代码和预先训练的型号可在https://github.com/paddlepaddle/paddledentions提供。
translated by 谷歌翻译
对于移动设备上的实际深度神经网络设计,必须考虑计算资源产生的约束以及各种应用中的推理延迟。在深度网络加速相关方法中,修剪是广泛采用的做法,以平衡计算资源消耗和准确性,可以在明智地或随机地拆除通道的不重要连接,并对模型精度的最小影响最小。信道修剪立即导致显着的延迟降低,而随机重量灌注更加灵活,以平衡延迟和精度。在本文中,我们介绍了一个统一的框架,具有联合通道修剪和重量修剪(JCW),并且在比以前的模型压缩方法的延迟和准确性之间实现更好的静脉前沿。为了完全优化延迟和准确性之间的权衡,我们在JCW框架中开发了一定量身定制的多目标进化算法,这使得一个搜索能够获得各种部署要求的最佳候选架构。广泛的实验表明,JCW在想象集分类数据集上的各种最先进的修剪方法之间实现了更好的折衷和准确性。我们的代码在https://github.com/jcw-anonymous/jcw提供。
translated by 谷歌翻译
Deploying convolutional neural networks (CNNs) on embedded devices is difficult due to the limited memory and computation resources. The redundancy in feature maps is an important characteristic of those successful CNNs, but has rarely been investigated in neural architecture design. This paper proposes a novel Ghost module to generate more feature maps from cheap operations. Based on a set of intrinsic feature maps, we apply a series of linear transformations with cheap cost to generate many ghost feature maps that could fully reveal information underlying intrinsic features. The proposed Ghost module can be taken as a plug-and-play component to upgrade existing convolutional neural networks. Ghost bottlenecks are designed to stack Ghost modules, and then the lightweight Ghost-Net can be easily established. Experiments conducted on benchmarks demonstrate that the proposed Ghost module is an impressive alternative of convolution layers in baseline models, and our GhostNet can achieve higher recognition performance (e.g. 75.7% top-1 accuracy) than MobileNetV3 with similar computational cost on the ImageNet ILSVRC-2012 classification dataset. Code is available at https: //github.com/huawei-noah/ghostnet.
translated by 谷歌翻译
我们提出了三种新型的修剪技术,以提高推理意识到的可区分神经结构搜索(DNAS)的成本和结果。首先,我们介绍了DNA的随机双路构建块,它可以通过内存和计算复杂性在内部隐藏尺寸上进行搜索。其次,我们在搜索过程中提出了一种在超级网的随机层中修剪块的算法。第三,我们描述了一种在搜索过程中修剪不必要的随机层的新技术。由搜索产生的优化模型称为Prunet,并在Imagenet Top-1图像分类精度的推理潜伏期中为NVIDIA V100建立了新的最先进的Pareto边界。将Prunet作为骨架还优于COCO对象检测任务的GPUNET和EFIDENENET,相对于平均平均精度(MAP)。
translated by 谷歌翻译
由于存储器和计算资源有限,部署在移动设备上的卷积神经网络(CNNS)是困难的。我们的目标是通过利用特征图中的冗余来设计包括CPU和GPU的异构设备的高效神经网络,这很少在神经结构设计中进行了研究。对于类似CPU的设备,我们提出了一种新颖的CPU高效的Ghost(C-Ghost)模块,以生成从廉价操作的更多特征映射。基于一组内在的特征映射,我们使用廉价的成本应用一系列线性变换,以生成许多幽灵特征图,可以完全揭示内在特征的信息。所提出的C-Ghost模块可以作为即插即用组件,以升级现有的卷积神经网络。 C-Ghost瓶颈旨在堆叠C-Ghost模块,然后可以轻松建立轻量级的C-Ghostnet。我们进一步考虑GPU设备的有效网络。在建筑阶段的情况下,不涉及太多的GPU效率(例如,深度明智的卷积),我们建议利用阶段明智的特征冗余来制定GPU高效的幽灵(G-GHOST)阶段结构。舞台中的特征被分成两个部分,其中使用具有较少输出通道的原始块处理第一部分,用于生成内在特征,另一个通过利用阶段明智的冗余来生成廉价的操作。在基准测试上进行的实验证明了所提出的C-Ghost模块和G-Ghost阶段的有效性。 C-Ghostnet和G-Ghostnet分别可以分别实现CPU和GPU的准确性和延迟的最佳权衡。代码可在https://github.com/huawei-noah/cv-backbones获得。
translated by 谷歌翻译
神经结构搜索(NAS)已被广泛采用设计准确,高效的图像分类模型。但是,将NAS应用于新的计算机愿景任务仍然需要大量的努力。这是因为1)以前的NAS研究已经过度优先考虑图像分类,同时在很大程度上忽略了其他任务; 2)许多NAS工作侧重于优化特定于任务特定的组件,这些组件不能有利地转移到其他任务; 3)现有的NAS方法通常被设计为“Proxyless”,需要大量努力与每个新任务的培训管道集成。为了解决这些挑战,我们提出了FBNetv5,这是一个NAS框架,可以在各种视觉任务中寻找神经架构,以降低计算成本和人力努力。具体而言,我们设计1)一个简单但包容性和可转换的搜索空间; 2)用目标任务培训管道解开的多址搜索过程; 3)一种算法,用于同时搜索具有计算成本不可知的多个任务的架构到任务数。我们评估所提出的FBNetv5目标三个基本视觉任务 - 图像分类,对象检测和语义分割。 FBNETV5在单一搜索中搜索的模型在所有三个任务中都表现优于先前的议定书 - 现有技术:图像分类(例如,与FBNetv3相比,在与FBNetv3相比的同一拖鞋下的1 + 1.3%Imageet Top-1精度。 (例如,+ 1.8%较高的Ade20k Val。Miou比SegFormer为3.6倍的拖鞋),对象检测(例如,+ 1.1%Coco Val。与yolox相比,拖鞋的1.2倍的地图。
translated by 谷歌翻译
结构重新参数化(REP)方法已在传统的卷积网络上取得了重大的性能提高。大多数当前的REP方法依靠先验知识来选择重新聚集操作。但是,体系结构的性能受到操作类型和先验知识的限制。为了打破这项限制,在这项工作中,设计了改进的重新参数化搜索空间,其中包括更多类型的重新参数操作。具体而言,搜索空间可以进一步提高卷积网络的性能。为了有效地探索该搜索空间,基于神经体系结构搜索(NAS)设计了自动重新参数增强策略,该策略可以搜索出色的重新参数化体系结构。此外,我们可视化体系结构的输出功能,以分析形成重新参数架构的原因。在公共数据集中,我们取得了更好的结果。在与RESNET相同的训练条件下,我们将Resnet-50的准确性提高了Imagenet-1K的1.82%。
translated by 谷歌翻译
混合精确的深神经网络达到了硬件部署所需的能源效率和吞吐量,尤其是在资源有限的情况下,而无需牺牲准确性。但是,不容易找到保留精度的最佳每层钻头精度,尤其是在创建巨大搜索空间的大量模型,数据集和量化技术中。为了解决这一困难,最近出现了一系列文献,并且已经提出了一些实现有希望的准确性结果的框架。在本文中,我们首先总结了文献中通常使用的量化技术。然后,我们对混合精液框架进行了彻底的调查,该调查是根据其优化技术进行分类的,例如增强学习和量化技术,例如确定性舍入。此外,讨论了每个框架的优势和缺点,我们在其中呈现并列。我们最终为未来的混合精液框架提供了指南。
translated by 谷歌翻译