我们为复发性神经网络提出了一种新颖的记忆增强机制,该机制利用了人类认知评估在顺序评估任务中的影响。我们将增强记忆的机制概念化为增强记忆单元(RMU),其中包含一个评估状态以及两个正面和负面的增强记忆。通过更强的刺激,这两个增强记忆是腐烂或增强的。此后,评估国家通过积极和消极的强化记忆进行更新。因此,RMU可以在刺激的暴力变化下学习评估差异,以估计人类情感体验。如视频质量评估和经验任务的视频质量的实验所示,拟议的增强记忆单元在复发性神经网络中达到了卓越的性能,这证明了RMU在建模人类认知评估中的有效性。
translated by 谷歌翻译
In this paper we compare different types of recurrent units in recurrent neural networks (RNNs). Especially, we focus on more sophisticated units that implement a gating mechanism, such as a long short-term memory (LSTM) unit and a recently proposed gated recurrent unit (GRU). We evaluate these recurrent units on the tasks of polyphonic music modeling and speech signal modeling. Our experiments revealed that these advanced recurrent units are indeed better than more traditional recurrent units such as tanh units. Also, we found GRU to be comparable to LSTM.
translated by 谷歌翻译
The time-series forecasting (TSF) problem is a traditional problem in the field of artificial intelligence. Models such as Recurrent Neural Network (RNN), Long Short Term Memory (LSTM), and GRU (Gate Recurrent Units) have contributed to improving the predictive accuracy of TSF. Furthermore, model structures have been proposed to combine time-series decomposition methods, such as seasonal-trend decomposition using Loess (STL) to ensure improved predictive accuracy. However, because this approach is learned in an independent model for each component, it cannot learn the relationships between time-series components. In this study, we propose a new neural architecture called a correlation recurrent unit (CRU) that can perform time series decomposition within a neural cell and learn correlations (autocorrelation and correlation) between each decomposition component. The proposed neural architecture was evaluated through comparative experiments with previous studies using five univariate time-series datasets and four multivariate time-series data. The results showed that long- and short-term predictive performance was improved by more than 10%. The experimental results show that the proposed CRU is an excellent method for TSF problems compared to other neural architectures.
translated by 谷歌翻译
预测基金绩效对投资者和基金经理都是有益的,但这是一项艰巨的任务。在本文中,我们测试了深度学习模型是否比传统统计技术更准确地预测基金绩效。基金绩效通常通过Sharpe比率进行评估,该比例代表了风险调整的绩效,以确保基金之间有意义的可比性。我们根据每月收益率数据序列数据计算了年度夏普比率,该数据的时间序列数据为600多个投资于美国上市大型股票的开放式共同基金投资。我们发现,经过现代贝叶斯优化训练的长期短期记忆(LSTM)和封闭式复发单元(GRUS)深度学习方法比传统统计量相比,预测基金的Sharpe比率更高。结合了LSTM和GRU的预测的合奏方法,可以实现所有模型的最佳性能。有证据表明,深度学习和结合能提供有希望的解决方案,以应对基金绩效预测的挑战。
translated by 谷歌翻译
Recent developments in quantum computing and machine learning have propelled the interdisciplinary study of quantum machine learning. Sequential modeling is an important task with high scientific and commercial value. Existing VQC or QNN-based methods require significant computational resources to perform the gradient-based optimization of a larger number of quantum circuit parameters. The major drawback is that such quantum gradient calculation requires a large amount of circuit evaluation, posing challenges in current near-term quantum hardware and simulation software. In this work, we approach sequential modeling by applying a reservoir computing (RC) framework to quantum recurrent neural networks (QRNN-RC) that are based on classical RNN, LSTM and GRU. The main idea to this RC approach is that the QRNN with randomly initialized weights is treated as a dynamical system and only the final classical linear layer is trained. Our numerical simulations show that the QRNN-RC can reach results comparable to fully trained QRNN models for several function approximation and time series prediction tasks. Since the QRNN training complexity is significantly reduced, the proposed model trains notably faster. In this work we also compare to corresponding classical RNN-based RC implementations and show that the quantum version learns faster by requiring fewer training epochs in most cases. Our results demonstrate a new possibility to utilize quantum neural network for sequential modeling with greater quantum hardware efficiency, an important design consideration for noisy intermediate-scale quantum (NISQ) computers.
translated by 谷歌翻译
360 {\ TextDegree}视频的盲目视觉质量评估(BVQA)在优化沉浸式多媒体系统中起着关键作用。在评估360 {\ TextDegree}视频的质量时,人类倾向于从每个球形帧的基于视口的空间失真来识别其在相邻帧中的运动伪影,以视频级质量分数为止,即渐进性质量评估范式。然而,现有的BVQA方法对于360 {\ TextDegree}视频忽略了这条范式。在本文中,我们考虑了人类对球面视频质量的逐步范例,因此提出了一种新颖的BVQA方法(即ProvQA),通过逐步学习从像素,帧和视频中逐步学习。对应于像素,帧和视频的渐进学习,三个子网被设计为我们的PROPQA方法,即球形感知感知质量预测(SPAQ),运动感知感知质量预测(MPAQ)和多帧时间非本地(MFTN)子网。 SPAQ子网首先模拟基于人的球面感知机制的空间质量下降。然后,通过跨越相邻帧的运动提示,MPAQ子网适当地结合了在360 {\ TextDegree}视频上的质量评估的运动上下文信息。最后,MFTN子网聚集多帧质量劣化,通过探索来自多个帧的长期质量相关性来产生最终质量分数。实验验证了我们的方法在两个数据集中的360 {\ TextDegree}视频上显着提高了最先进的BVQA性能,该代码是公共\ url {https://github.com/yanglixiaoshen/的代码Provqa。}
translated by 谷歌翻译
随着非专家们拍摄的野外视频的快速增长,盲目视频质量评估(VQA)已成为一个具有挑战性且苛刻的问题。尽管已经做出了许多努力来解决这个问题,但尚不清楚人类视觉系统(HVS)与视频的时间质量有何关系。同时,最近的工作发现,自然视频的框架变成了HV的感知领域,往往会形成表示形式的直线轨迹。通过获得的洞察力,即失真会损害感知的视频质量并导致感知表示的弯曲轨迹,我们提出了一个时间感知质量指数(TPQI),以通过描述表示形式的图形形态来测量时间失真。具体而言,我们首先从HVS的横向基因核(LGN)和主要视觉区域(V1)中提取视频感知表示,然后测量其轨迹的直率和紧凑性,以量化视频的自然性和内容连续性的降解。实验表明,HVS中的感知表示是一种预测主观时间质量的有效方法,因此TPQI首次可以实现与空间质量度量的可比性能,并且在评估具有较大时间变化的视频方面更加有效。我们进一步证明,通过与NIQE(空间质量指标)结合使用,TPQI可以在流行的野外视频数据集中实现最佳性能。更重要的是,除了要评估的视频之外,TPQI不需要任何其他信息,因此可以将其应用于任何数据集,而无需参数调整。源代码可在https://github.com/uolmm/tpqi-vqa上找到。
translated by 谷歌翻译
研究了自闭症数据集,以确定自闭症和健康组之间的差异。为此,分析了这两组的静止状态功能磁共振成像(RS-FMRI)数据,并创建了大脑区域之间的连接网络。开发了几个分类框架,以区分组之间的连接模式。比较了统计推断和精度的最佳模型,并分析了精度和模型解释性之间的权衡。最后,据报道,分类精度措施证明了我们框架的性能。我们的最佳模型可以以71%的精度将自闭症和健康的患者分类为多站点I数据。
translated by 谷歌翻译
当前信息时代在互联网上产生的数据的指数增长是数字经济的推动力。信息提取是累积大数据中的主要价值。对统计分析和手工设计的规则机器学习算法的大数据依赖性被人类语言固有的巨大复杂性所淹没。自然语言处理(NLP)正在装备机器,以了解这些人类多样化和复杂的语言。文本分类是一个NLP任务,它会自动识别基于预定义或未定标记的集合的模式。常见的文本分类应用程序包括信息检索,建模新闻主题,主题提取,情感分析和垃圾邮件检测。在文本中,某些单词序列取决于上一个或下一个单词序列以使其充分含义。这是一项具有挑战性的依赖性任务,要求机器能够存储一些以前的重要信息以影响未来的含义。诸如RNN,GRU和LSTM之类的序列模型是具有长期依赖性任务的突破。因此,我们将这些模型应用于二进制和多类分类。产生的结果非常出色,大多数模型在80%和94%的范围内执行。但是,这个结果并不详尽,因为我们认为如果机器要与人类竞争,可以改进。
translated by 谷歌翻译
基于视觉的人类活动识别已成为视频分析领域的重要研究领域之一。在过去的十年中,已经引入了许多先进的深度学习算法,以识别视频流中复杂的人类行为。这些深度学习算法对人类活动识别任务显示出令人印象深刻的表现。但是,这些新引入的方法仅专注于模型性能或这些模型在计算效率和鲁棒性方面的有效性,从而导致其解决挑战性人类活动识别问题的提议中的偏差折衷。为了克服当代深度学习模型对人类活动识别的局限性,本文提出了一个计算高效但通用的空间级联框架,该框架利用了深层歧视性的空间和时间特征,以识别人类活动的识别。为了有效地表示人类行动,我们提出了有效的双重注意卷积神经网络(CNN)体系结构,该结构利用统一的通道空间注意机制来提取视频框架中以人为中心的显着特征。双通道空间注意力层与卷积层一起学会在具有特征图数量的物体的空间接收场中更加专注。然后将提取的判别显着特征转发到堆叠的双向封闭式复发单元(BI-GRU),以使用前进和后传球梯度学习,以实现长期时间建模和对人类行为的识别。进行了广泛的实验,其中获得的结果表明,与大多数当代动作识别方法相比,所提出的框架的执行时间的改善最高167倍。
translated by 谷歌翻译
序列表示学习的主要挑战是捕获远程时间依赖性。监督序列表示学习的典型方法是基于复发性神经网络构建的,以捕获时间依赖性。这些方法的一个潜在局限性是,它们仅在序列中明确对相邻时间步长的一阶信息相互作用进行建模,因此,未完全利用了非相应时间步长之间的高阶相互作用。它极大地限制了建模远程时间依赖性的能力,因为由于时间信息稀释和梯度消失,无法长期保持一阶相互作用所学的时间特征。为了应对这一限制,我们提出了用于监督序列表示学习的非本地复发性神经记忆(NRNM),该学习执行非本地操作\ Mr {通过自我关注机制}以在滑动时间内学习全阶相互作用内存块和模拟内存块之间的全局相互作用以封闭式的复发方式。因此,我们的模型能够捕获远程依赖性。此外,我们的模型可以蒸馏出高阶相互作用中包含的潜在高级特征。我们验证了NRNM在不同模态的三种序列应用上的有效性和概括,包括序列分类,逐步的顺序预测和序列相似性学习。我们的模型与针对这些序列应用中的每个序列应用专门设计的其他最新方法进行了比较。
translated by 谷歌翻译
Multivariate time series data in practical applications, such as health care, geoscience, and biology, are characterized by a variety of missing values. In time series prediction and other related tasks, it has been noted that missing values and their missing patterns are often correlated with the target labels, a.k.a., informative missingness. There is very limited work on exploiting the missing patterns for effective imputation and improving prediction performance. In this paper, we develop novel deep learning models, namely GRU-D, as one of the early attempts. GRU-D is based on Gated Recurrent Unit (GRU), a state-of-the-art recurrent neural network. It takes two representations of missing patterns, i.e., masking and time interval, and effectively incorporates them into a deep model architecture so that it not only captures the long-term temporal dependencies in time series, but also utilizes the missing patterns to achieve better prediction results. Experiments of time series classification tasks on real-world clinical datasets (MIMIC-III, PhysioNet) and synthetic datasets demonstrate that our models achieve state-of-the-art performance and provides useful insights for better understanding and utilization of missing values in time series analysis.
translated by 谷歌翻译
近年来,使用正交矩阵已被证明是通过训练,稳定性和收敛尤其是控制梯度来改善复发性神经网络(RNN)的一种有希望的方法。通过使用各种门和记忆单元,封闭的复发单元(GRU)和长期短期记忆(LSTM)体系结构解决了消失的梯度问题,但它们仍然容易出现爆炸梯度问题。在这项工作中,我们分析了GRU中的梯度,并提出了正交矩阵的使用,以防止梯度问题爆炸并增强长期记忆。我们研究了在哪里使用正交矩阵,并提出了基于Neumann系列的缩放尺度的Cayley转换,以训练GRU中的正交矩阵,我们称之为Neumann-cayley Orthoconal orthoconal Gru或简单的NC-GRU。我们介绍了有关几个合成和现实世界任务的模型的详细实验,这些实验表明NC-GRU明显优于GRU以及其他几个RNN。
translated by 谷歌翻译
Models based on deep convolutional networks have dominated recent image interpretation tasks; we investigate whether models which are also recurrent, or "temporally deep", are effective for tasks involving sequences, visual and otherwise. We develop a novel recurrent convolutional architecture suitable for large-scale visual learning which is end-to-end trainable, and demonstrate the value of these models on benchmark video recognition tasks, image description and retrieval problems, and video narration challenges. In contrast to current models which assume a fixed spatio-temporal receptive field or simple temporal averaging for sequential processing, recurrent convolutional models are "doubly deep" in that they can be compositional in spatial and temporal "layers". Such models may have advantages when target concepts are complex and/or training data are limited. Learning long-term dependencies is possible when nonlinearities are incorporated into the network state updates. Long-term RNN models are appealing in that they directly can map variable-length inputs (e.g., video frames) to variable length outputs (e.g., natural language text) and can model complex temporal dynamics; yet they can be optimized with backpropagation. Our recurrent long-term models are directly connected to modern visual convnet models and can be jointly trained to simultaneously learn temporal dynamics and convolutional perceptual representations. Our results show such models have distinct advantages over state-of-the-art models for recognition or generation which are separately defined and/or optimized.
translated by 谷歌翻译
With the evolution of power systems as it is becoming more intelligent and interactive system while increasing in flexibility with a larger penetration of renewable energy sources, demand prediction on a short-term resolution will inevitably become more and more crucial in designing and managing the future grid, especially when it comes to an individual household level. Projecting the demand for electricity for a single energy user, as opposed to the aggregated power consumption of residential load on a wide scale, is difficult because of a considerable number of volatile and uncertain factors. This paper proposes a customized GRU (Gated Recurrent Unit) and Long Short-Term Memory (LSTM) architecture to address this challenging problem. LSTM and GRU are comparatively newer and among the most well-adopted deep learning approaches. The electricity consumption datasets were obtained from individual household smart meters. The comparison shows that the LSTM model performs better for home-level forecasting than alternative prediction techniques-GRU in this case. To compare the NN-based models with contrast to the conventional statistical technique-based model, ARIMA based model was also developed and benchmarked with LSTM and GRU model outcomes in this study to show the performance of the proposed model on the collected time series data.
translated by 谷歌翻译
作为自然现象的地震,历史上不断造成伤害和人类生活的损失。地震预测是任何社会计划的重要方面,可以增加公共准备,并在很大程度上减少损坏。然而,由于地震的随机特征以及实现了地震预测的有效和可靠模型的挑战,迄今为止努力一直不足,需要新的方法来解决这个问题。本文意识到​​这些问题,提出了一种基于注意机制(AM),卷积神经网络(CNN)和双向长短期存储器(BILSTM)模型的新型预测方法,其可以预测数量和最大幅度中国大陆各地区的地震为基于该地区的地震目录。该模型利用LSTM和CNN具有注意机制,以更好地关注有效的地震特性并产生更准确的预测。首先,将零阶保持技术应用于地震数据上的预处理,使得模型的输入数据更适当。其次,为了有效地使用空间信息并减少输入数据的维度,CNN用于捕获地震数据之间的空间依赖性。第三,使用Bi-LSTM层来捕获时间依赖性。第四,引入了AM层以突出其重要的特征来实现更好的预测性能。结果表明,该方法具有比其他预测方法更好的性能和概括能力。
translated by 谷歌翻译
Anticipating future actions based on video observations is an important task in video understanding, which would be useful for some precautionary systems that require response time to react before an event occurs. Since the input in action anticipation is only pre-action frames, models do not have enough information about the target action; moreover, similar pre-action frames may lead to different futures. Consequently, any solution using existing action recognition models can only be suboptimal. Recently, researchers have proposed using a longer video context to remedy the insufficient information in pre-action intervals, as well as the self-attention to query past relevant moments to address the anticipation problem. However, the indirect use of video input features as the query might be inefficient, as it only serves as the proxy to the anticipation goal. To this end, we propose an inductive attention model, which transparently uses prior prediction as the query to derive the anticipation result by induction from past experience. Our method naturally considers the uncertainty of multiple futures via the many-to-many association. On the large-scale egocentric video datasets, our model not only shows consistently better performance than state of the art using the same backbone, and is competitive to the methods that employ a stronger backbone, but also superior efficiency in less model parameters.
translated by 谷歌翻译
Common to all different kinds of recurrent neural networks (RNNs) is the intention to model relations between data points through time. When there is no immediate relationship between subsequent data points (like when the data points are generated at random, e.g.), we show that RNNs are still able to remember a few data points back into the sequence by memorizing them by heart using standard backpropagation. However, we also show that for classical RNNs, LSTM and GRU networks the distance of data points between recurrent calls that can be reproduced this way is highly limited (compared to even a loose connection between data points) and subject to various constraints imposed by the type and size of the RNN in question. This implies the existence of a hard limit (way below the information-theoretic one) for the distance between related data points within which RNNs are still able to recognize said relation.
translated by 谷歌翻译
由于在线学习和评估平台(例如Coursera,Udemy,Khan Academy等)的兴起,对论文(AES)和自动论文评分的自动评估(AES)已成为一个严重的问题。研究人员最近提出了许多用于自动评估的技术。但是,其中许多技术都使用手工制作的功能,因此从特征表示的角度受到限制。深度学习已成为机器学习中的新范式,可以利用大量数据并确定对论文评估有用的功能。为此,我们提出了一种基于复发网络(RNN)和卷积神经网络(CNN)的新型体系结构。在拟议的体系结构中,多通道卷积层从嵌入矢量和基本语义概念中学习并捕获单词n-gram的上下文特征,并使用max-pooling操作在论文级别形成特征向量。 RNN的变体称为双门复发单元(BGRU),用于访问以前和后续的上下文表示。该实验是对Kaggle上的八个数据集进行的,以实现AES的任务。实验结果表明,我们提出的系统比其他基于深度学习的AES系统以及其他最新AES系统的评分精度明显更高。
translated by 谷歌翻译
视频质量评估(VQA)仍然是一个重要而挑战性的问题,影响了最广泛的尺度的许多应用程序。移动设备和云计算技术的最新进展使得可以捕获,处理和共度高分辨率,高分辨率(HFR)视频几乎瞬间。能够监控和控制这些流式视频的质量可以使得能够提供更令人愉快的内容和感知的优化速率控制。因此,需要一种强迫需要开发可以在巨大尺度部署的VQA模型。虽然最近的一些效果已应用于可变帧速率和HFR视频质量的全参考(FR)分析,但是没有研究帧速率变化的无引用(NR)VQA算法的开发。在这里,我们提出了一种用于评估HFR视频的一级盲VQA模型,我们将其配给了帧群感知视频评估程序W / O参考(Faver)。 Faver使用扩展模型的空间自然场景统计数据,即包括节省空间小波分解的视频信号,进行有效的帧速率敏感质量预测。我们对几个HFR视频质量数据集的广泛实验表明,PEVER以合理的计算成本优于其他盲VQA算法。为了便于可重复的研究和公共评估,在线可以在线进行狂热的实施:\ url {https://github.com/uniqzheng/hfr-bvqa}。
translated by 谷歌翻译