循环不变的合成是程序验证的基础。由于问题的不可证实,因此不变合成的工具必然使用启发式方法。尽管人们普遍认为,启发式方法的设计对于合成器的性能至关重要,但启发式方法通常是根据经验和直觉的开发人员来设计的,有时是以\ emph {Ad-Hoc}方式进行的。在这项工作中,我们提出了一种系统地学习基于模板的反例引导的归纳合成(CEGIS)的方法,并通过增强学习。作为具体示例,我们在PCSAT之上实现了该方法,PCSAT是基于基于模板的CEGIS的不变合成器。实验表明,在我们的框架所学到的启发式方法的指导下,PCSAT不仅优于现有的基于CEGIS的最先进的求解器,例如Hoice和Neural Solver Code2Inv,而且比基于非CEGIS的求解器(例如基于非首席执行官)具有略有优势线性约束角(CHC)求解中的Eldarica和垫片。
translated by 谷歌翻译
我们提出了一种新的方法来自动化定理证明和演绎计划的综合,其中alphazero式的代理人正在自我培训,以完善以非确定计划表示的高级专家策略。一个类似的教师代理人是自我训练,以产生对学习者的适当相关性和难度的任务。这允许利用最少的域知识来解决训练数据无法获得或难以合成的问题。我们说明了关于命令程序不变合成问题的方法,并使用神经网络来完善教师和求解器策略。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
General mathematical reasoning is computationally undecidable, but humans routinely solve new problems. Moreover, discoveries developed over centuries are taught to subsequent generations quickly. What structure enables this, and how might that inform automated mathematical reasoning? We posit that central to both puzzles is the structure of procedural abstractions underlying mathematics. We explore this idea in a case study on 5 sections of beginning algebra on the Khan Academy platform. To define a computational foundation, we introduce Peano, a theorem-proving environment where the set of valid actions at any point is finite. We use Peano to formalize introductory algebra problems and axioms, obtaining well-defined search problems. We observe existing reinforcement learning methods for symbolic reasoning to be insufficient to solve harder problems. Adding the ability to induce reusable abstractions ("tactics") from its own solutions allows an agent to make steady progress, solving all problems. Furthermore, these abstractions induce an order to the problems, seen at random during training. The recovered order has significant agreement with the expert-designed Khan Academy curriculum, and second-generation agents trained on the recovered curriculum learn significantly faster. These results illustrate the synergistic role of abstractions and curricula in the cultural transmission of mathematics.
translated by 谷歌翻译
马尔可夫决策过程通常用于不确定性下的顺序决策。然而,对于许多方面,从受约束或安全规范到任务和奖励结构中的各种时间(非Markovian)依赖性,需要扩展。为此,近年来,兴趣已经发展成为强化学习和时间逻辑的组合,即灵活的行为学习方法的组合,具有稳健的验证和保证。在本文中,我们描述了最近引入的常规决策过程的实验调查,该过程支持非马洛维亚奖励功能以及过渡职能。特别是,我们为常规决策过程,与在线,增量学习有关的算法扩展,对无模型和基于模型的解决方案算法的实证评估,以及以常规但非马尔维亚,网格世界的应用程序的算法扩展。
translated by 谷歌翻译
回溯搜索算法通常用于解决约束满足问题(CSP)。回溯搜索的效率在很大程度上取决于可变排序启发式。目前,最常用的启发式是根据专家知识进行手工制作的。在本文中,我们提出了一种基于深度的加强学习方法,可以自动发现新的变量订购启发式,更好地适用于给定类CSP实例。我们显示,直接优化搜索成本很难用于自动启动,并建议优化在搜索树中到达叶节点的预期成本。为了捕获变量和约束之间的复杂关系,我们设计基于图形神经网络的表示方案,可以处理具有不同大小和约束的CSP实例。随机CSP实例上的实验结果表明,学习的政策在最小化搜索树大小的方面优于古典手工制作的启发式,并且可以有效地推广到比训练中使用的实例。
translated by 谷歌翻译
我们提出了一个通用图形神经网络体系结构,可以作为任何约束满意度问题(CSP)作为末端2端搜索启发式训练。我们的体系结构可以通过政策梯度下降进行无监督的培训,以纯粹的数据驱动方式为任何CSP生成问题的特定启发式方法。该方法基于CSP的新型图表,既是通用又紧凑的,并且使我们能够使用一个GNN处理所有可能的CSP实例,而不管有限的Arity,关系或域大小。与以前的基于RL的方法不同,我们在全局搜索动作空间上运行,并允许我们的GNN在随机搜索的每个步骤中修改任何数量的变量。这使我们的方法能够正确利用GNN的固有并行性。我们进行了彻底的经验评估,从随机数据(包括图形着色,Maxcut,3-SAT和Max-K-Sat)中学习启发式和重要的CSP。我们的方法表现优于先验的神经组合优化的方法。它可以在测试实例上与常规搜索启发式竞争,甚至可以改善几个数量级,结构上比训练中看到的数量级更为复杂。
translated by 谷歌翻译
This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems. Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions that are otherwise too expensive to compute or mathematically not well defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task.
translated by 谷歌翻译
强化学习的关键挑战是解决了长地平规划问题。最近的工作已经利用计划在这些设置中引导钢筋学习。但是,这些方法对用户施加了高手动负担,因为它们必须为每项新任务提供指导计划。部分观察到的环境进一步使编程任务复杂化,因为程序必须实现正确,理想地最佳地实现策略,处理环境的隐藏区域的所有可能配置。我们提出了一种新的方法,模型预测程序合成(MPP),它使用程序综合来自动生成指导程序。它培训了一种生成模型来预测世界的未观察到的部分,然后以鲁棒到其不确定性的方式基于来自该模型的样本来综合程序。在我们的实验中,我们表明我们的方法在一组具有挑战性的基准上显着优于非程序引导的方法,包括2D Minecraft-Inspired环境,代理商必须完成复杂的子组织序列来实现其目标,并实现类似的使用手动程序指导代理的性能。我们的结果表明,我们的方法可以在不需要用户为每项新任务提供新的指导计划的情况下获得方案引导的强化学习的好处。
translated by 谷歌翻译
命题模型计数或#SAT是计算布尔公式满足分配数量的问题。来自不同应用领域的许多问题,包括许多离散的概率推理问题,可以将#SAT求解器解决的模型计数问题转化为模型计数问题。但是,确切的#sat求解器通常无法扩展到工业规模实例。在本文中,我们提出了Neuro#,这是一种学习分支启发式方法,以提高特定问题家族中的实例的精确#sat求解器的性能。我们通过实验表明,我们的方法减少了类似分布的持有实例的步骤,并将其推广到同一问题家族的更大实例。它能够在具有截然不同的结构的许多不同问题家族上实现这些结果。除了步骤计数的改进外,Neuro#还可以在某些问题家族的较大实例上在较大的实例上实现壁式锁定速度的订单,尽管开头查询了模型。
translated by 谷歌翻译
域特异性启发式方法是有效解决组合问题的必不可少的技术。当前将特定于域的启发式方法与答案集编程(ASP)集成的方法在处理基于部分分配的非单调指定的启发式方法时,这是不令人满意的。例如,在挑选尚未放入垃圾箱中的物品时,这种启发式方法经常发生。因此,我们介绍了ASP中域特异性启发式方法声明性规范的新颖语法和语义。我们的方法支持启发式陈述,依赖于解决过程中所维持的部分任务,这是不可能的。我们在Alpha中提供了一种实现,该实现使Alpha成为第一个支持声明指定的域特定启发式方法的懒惰的ASP系统。使用两个实际的示例域来证明我们的提议的好处。此外,我们使用我们的方法用A*实施知情},该搜索首次在ASP中解决。 A*应用于两个进一步的搜索问题。实验证实,结合懒惰的ASP解决方案和我们的新型启发式方法对于解决工业大小的问题至关重要。
translated by 谷歌翻译
在AI研究中,合成动作计划通常使用了抽象地指定由于动作而导致的动作的描述性模型,并针对有效计算状态转换来定制。然而,执行计划的动作已经需要运行模型,其中使用丰富的计算控制结构和闭环在线决策来指定如何在非预定的执行上下文中执行动作,对事件作出反应并适应展开情况。整合行动和规划的审议演员通常需要将这两种模型一起使用 - 在尝试开发不同的型号时会导致问题,验证它们的一致性,并顺利交错和规划。作为替代方案,我们定义和实施综合作用和规划系统,其中规划和行为使用相同的操作模型。这些依赖于提供丰富的控制结构的分层任务导向的细化方法。称为反应作用发动机(RAE)的作用组件由众所周知的PRS系统启发。在每个决定步骤中,RAE可以从计划者获取建议,以获得关于效用功能的近乎最佳选择。随时计划使用像UPOM的UCT类似的蒙特卡罗树搜索程序,其推出是演员操作模型的模拟。我们还提供与RAE和UPOM一起使用的学习策略,从在线代理体验和/或模拟计划结果,从决策背景下映射到方法实例以及引导UPOM的启发式函数。我们展示了富豪朝向静态域的最佳方法的渐近融合,并在实验上展示了UPOM和学习策略显着提高了作用效率和鲁棒性。
translated by 谷歌翻译
蒙特卡洛树搜索(MCT)是设计游戏机器人或解决顺序决策问题的强大方法。该方法依赖于平衡探索和开发的智能树搜索。MCT以模拟的形式进行随机抽样,并存储动作的统计数据,以在每个随后的迭代中做出更有教育的选择。然而,该方法已成为组合游戏的最新技术,但是,在更复杂的游戏(例如那些具有较高的分支因素或实时系列的游戏)以及各种实用领域(例如,运输,日程安排或安全性)有效的MCT应用程序通常需要其与问题有关的修改或与其他技术集成。这种特定领域的修改和混合方法是本调查的主要重点。最后一项主要的MCT调查已于2012年发布。自发布以来出现的贡献特别感兴趣。
translated by 谷歌翻译
This paper surveys the eld of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the eld and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but di ers considerably in the details and in the use of the word \reinforcement." The paper discusses central issues of reinforcement learning, including trading o exploration and exploitation, establishing the foundations of the eld via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.
translated by 谷歌翻译
Monte Carlo Tree Search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarise the results from the key game and non-game domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work.
translated by 谷歌翻译
归纳逻辑编程(ILP)是一种机器学习的形式。ILP的目标是诱导推广培训示例的假设(一组逻辑规则)。随着ILP转30,我们提供了对该领域的新介绍。我们介绍了必要的逻辑符号和主要学习环境;描述ILP系统的构建块;比较几个维度的几个系统;描述四个系统(Aleph,Tilde,Aspal和Metagol);突出关键应用领域;最后,总结了未来研究的当前限制和方向。
translated by 谷歌翻译
奖励设计是强化学习(RL)的根本问题。错过或设计不佳的奖励可能导致样品效率低和不期望的行为。在本文中,我们提出了\ texit {programmatic奖励设计}的想法,即使用程序在RL环境中指定奖励函数。程序允许人工工程师以结构化和可意识的方式表达子目标和复杂的任务场景。然而,程序奖励设计的挑战是,虽然人类可以提供高级结构,适当地设置低级细节,例如对特定子任务的正确奖励量仍然困难。本文的主要贡献是概率框架,可以从专家演示中推断出最佳候选程序奖励功能。灵感来自最近的生成 - 对策方法,我们的框架{搜索最有可能的编程奖励功能,在那时最佳生成的轨迹无法与所公示的轨迹界别区别}。实验结果表明,使用此框架学习的编程奖励功能可以显着优于使用现有奖励学习算法的学习者,并使RL代理能够在高度复杂的任务上实现最先进的性能。
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
虽然深增强学习已成为连续决策问题的有希望的机器学习方法,但对于自动驾驶或医疗应用等高利害域来说仍然不够成熟。在这种情况下,学习的政策需要例如可解释,因此可以在任何部署之前检查它(例如,出于安全性和验证原因)。本调查概述了各种方法,以实现加固学习(RL)的更高可解释性。为此,我们将解释性(作为模型的财产区分开来和解释性(作为HOC操作后的讲话,通过代理的干预),并在RL的背景下讨论它们,并强调前概念。特别是,我们认为可译文的RL可能会拥抱不同的刻面:可解释的投入,可解释(转型/奖励)模型和可解释的决策。根据该计划,我们总结和分析了与可解释的RL相关的最近工作,重点是过去10年来发表的论文。我们还简要讨论了一些相关的研究领域并指向一些潜在的有前途的研究方向。
translated by 谷歌翻译
已经开发了概率模型检查,用于验证具有随机和非季度行为的验证系统。鉴于概率系统,概率模型检查器占用属性并检查该系统中的属性是否保持。因此,概率模型检查提供严谨的保证。然而,到目前为止,概率模型检查专注于所谓的模型,其中一个状态由符号表示。另一方面,通常需要在规划和强化学习中进行关系抽象。各种框架处理关系域,例如条带规划和关系马尔可夫决策过程。使用命题模型检查关系设置需要一个地接地模型,这导致了众所周知的状态爆炸问题和难以承承性。我们提出了PCTL-Rebel,一种用于验证关系MDP的PCTL属性的提升模型检查方法。它延长了基于关系模型的强化学习技术的反叛者,朝着关系PCTL模型检查。 PCTL-REBEL被提升,这意味着而不是接地,模型利用对称在关系层面上整体的一组对象。从理论上讲,我们表明PCTL模型检查对于具有可能无限域的关系MDP可判定,条件是该状态具有有界大小。实际上,我们提供算法和提升关系模型检查的实现,并且我们表明提升方法提高了模型检查方法的可扩展性。
translated by 谷歌翻译