在这项工作中,我们提出胶水(图偏离网络与局部不确定性估计),在最近提出的图偏差网络(GDN)上建立。胶水不仅自动学习变量之间的复杂依赖性,并使用它们来更好地识别异常行为,而且还量化了其预测性的不确定性,允许我们考虑数据的变化以及具有更高的可解释的异常检测阈值。结果两个真实世界数据集告诉我们,优化负值高斯日志可能性是合理的,因为胶水的预测结果与GDN相提并论而言,实际上比矢量自动投播者基线更好,这对GDN直接优化了MSE损失很重要。总之,我们的实验表明,胶水在异常检测中具有GDN竞争力,具有不确定性估算的额外收益。我们还显示胶水学习有意义的传感器嵌入,将相似的传感器集成在一起。
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
多元时间序列异常检测已在半监督的设置下进行了广泛的研究,其中需要所有具有正常实例的训练数据集。但是,准备这样的数据集非常费力,因为每个数据实例应完全保证是正常的。因此,希望在没有任何标签知识的情况下基于数据集探索基于数据集的多元时间序列异常检测方法。在本文中,我们提出了MTGFLOF,这是通过动态图和实体意识到的归一化流量进行多变量时间序列异常检测的无监督异常检测方法,仅依靠广泛接受的假设,即异常实例比正常情况表现出稀疏的密度。但是,实体之间的复杂相互依赖性和每个实体的不同固有特征对密度估计提出了重大挑战,更不用说基于估计的可能性分布来检测异常。为了解决这些问题,我们建议通过图结构学习模型来学习实体之间的相互关系,这有助于建模多元时间序列的准确分布。此外,考虑到各个实体的独特特征,开发了实体意识到的归一化流,以将每个实体描述为参数化的正态分布,从而产生细粒密度估计。结合了这两种策略,MTGFlowChieves出色的异常检测性能。进行了现实世界数据集的实验,表明MTGFLOW的表现分别超过了最先进的(SOTA),分别对SWAT和WADI数据集的实验分别高出5.0%和1.6%的AUROC。同样,通过单个实体贡献的异常得分,MTGFLOF可以为检测结果提供解释信息。
translated by 谷歌翻译
在智能交通系统中,交通拥堵异常检测至关重要。运输机构的目标有两个方面:监视感兴趣领域的一般交通状况,并在异常拥堵状态下定位道路细分市场。建模拥塞模式可以实现这些目标,以实现全市道路的目标,相当于学习多元时间序列(MTS)的分布。但是,现有作品要么不可伸缩,要么无法同时捕获MTS中的空间信息。为此,我们提出了一个由数据驱动的生成方法组成的原则性和全面的框架,该方法可以执行可拖动的密度估计来检测流量异常。我们的方法在特征空间中的第一群段段,然后使用条件归一化流以在无监督的设置下在群集级别识别异常的时间快照。然后,我们通过在异常群集上使用内核密度估计器来识别段级别的异常。关于合成数据集的广泛实验表明,我们的方法在召回和F1得分方面显着优于几种最新的拥塞异常检测和诊断方法。我们还使用生成模型来采样标记的数据,该数据可以在有监督的环境中训练分类器,从而减轻缺乏在稀疏设置中进行异常检测的标记数据。
translated by 谷歌翻译
多元时间序列中的异常检测在监视各种现实世界系统(例如IT系统运营或制造业)的行为方面起着重要作用。先前的方法对关节分布进行建模,而无需考虑多元时间序列的潜在机制,使它们变得复杂且饥饿。在本文中,我们从因果的角度提出异常检测问题,并将异常视为未遵循常规因果机制来生成多元数据的情况。然后,我们提出了一种基于因果关系的异常检测方法,该方法首先从数据中学习因果结构,然后渗透实例是否是相对于局部因果机制的异常,以从其直接原因产生每个变量,其条件分布可以直接估计从数据。鉴于因果系统的模块化特性,原始问题被分为一系列单独的低维异常检测问题,因此可以直接识别出异常的地方。我们通过模拟和公共数据集以及有关现实世界中AIOPS应用程序的案例研究评估我们的方法,显示其功效,鲁棒性和实际可行性。
translated by 谷歌翻译
今天的网络世界难以多变量。在极端品种中收集的指标需要多变量算法以正确检测异常。然而,基于预测的算法,如被广泛证明的方法,通常在数据集中进行次优或不一致。一个关键的常见问题是他们努力成为一个尺寸适合的,但异常在自然中是独特的。我们提出了一种裁定到这种区别的方法。提出FMUAD - 一种基于预测,多方面,无监督的异常检测框架。FMUAD明确,分别捕获异常类型的签名性状 - 空间变化,时间变化和相关变化 - 与独立模块。然后,模块共同学习最佳特征表示,这是非常灵活和直观的,与类别中的大多数其他模型不同。广泛的实验表明我们的FMUAD框架始终如一地优于其他最先进的预测的异常探测器。
translated by 谷歌翻译
最近的研究表明,基于自动编码器的模型可以在异常检测任务上实现出色的性能,因为它们以无监督的方式适合复杂数据的能力出色。在这项工作中,我们提出了一种新型的基于自动编码器的模型,称为Stackvae-G,可以显着将效率和解释性带入多元时间序列异常检测。具体而言,我们通过使用权重共生方案的堆叠式重建来利用整个时间序列频道的相似性来减少学习模型的大小,并减轻培训数据中未知噪声的过度拟合。我们还利用图形学习模块来学习稀疏的邻接矩阵,以明确捕获多个时间序列通道之间的稳定相互关系结构,以便对相互关联的通道的可解释模式重建。结合了这两个模块,我们将堆叠式块VAE(变异自动编码器)与GNN(图神经网络)模型进行了多变量时间序列异常检测。我们对三个常用的公共数据集进行了广泛的实验,这表明我们的模型与最先进的模型相当(甚至更好)的性能,同时需要更少的计算和内存成本。此外,我们证明,通过模型学到的邻接矩阵可以准确捕获多个渠道之间的相互关系,并可以为失败诊断应用提供有价值的信息。
translated by 谷歌翻译
给定传感器读数随着时间的推移从电网上,我们如何在发生异常时准确地检测?实现这一目标的关键部分是使用电网传感器网络在电网上实时地在实时检测到自然故障或恶意的任何不寻常的事件。行业中现有的坏数据探测器缺乏鲁布布利地检测广泛类型的异常,特别是由于新兴网络攻击而造成的复杂性,因为它们一次在网格的单个测量快照上运行。新的ML方法更广泛适用,但通常不会考虑拓扑变化对传感器测量的影响,因此无法适应历史数据中的定期拓扑调整。因此,我们向DynWatch,基于域知识和拓扑知识算法用于使用动态网格上的传感器进行异常检测。我们的方法准确,优于实验中的现有方法20%以上(F-Measure);快速,在60K +分支机用中的每次传感器上平均运行小于1.7ms,使用笔记本电脑,并在图表的大小上线性缩放。
translated by 谷歌翻译
The detection of anomalies in time series data is crucial in a wide range of applications, such as system monitoring, health care or cyber security. While the vast number of available methods makes selecting the right method for a certain application hard enough, different methods have different strengths, e.g. regarding the type of anomalies they are able to find. In this work, we compare six unsupervised anomaly detection methods with different complexities to answer the questions: Are the more complex methods usually performing better? And are there specific anomaly types that those method are tailored to? The comparison is done on the UCR anomaly archive, a recent benchmark dataset for anomaly detection. We compare the six methods by analyzing the experimental results on a dataset- and anomaly type level after tuning the necessary hyperparameter for each method. Additionally we examine the ability of individual methods to incorporate prior knowledge about the anomalies and analyse the differences of point-wise and sequence wise features. We show with broad experiments, that the classical machine learning methods show a superior performance compared to the deep learning methods across a wide range of anomaly types.
translated by 谷歌翻译
Anomaly detection on time series data is increasingly common across various industrial domains that monitor metrics in order to prevent potential accidents and economic losses. However, a scarcity of labeled data and ambiguous definitions of anomalies can complicate these efforts. Recent unsupervised machine learning methods have made remarkable progress in tackling this problem using either single-timestamp predictions or time series reconstructions. While traditionally considered separately, these methods are not mutually exclusive and can offer complementary perspectives on anomaly detection. This paper first highlights the successes and limitations of prediction-based and reconstruction-based methods with visualized time series signals and anomaly scores. We then propose AER (Auto-encoder with Regression), a joint model that combines a vanilla auto-encoder and an LSTM regressor to incorporate the successes and address the limitations of each method. Our model can produce bi-directional predictions while simultaneously reconstructing the original time series by optimizing a joint objective function. Furthermore, we propose several ways of combining the prediction and reconstruction errors through a series of ablation studies. Finally, we compare the performance of the AER architecture against two prediction-based methods and three reconstruction-based methods on 12 well-known univariate time series datasets from NASA, Yahoo, Numenta, and UCR. The results show that AER has the highest averaged F1 score across all datasets (a 23.5% improvement compared to ARIMA) while retaining a runtime similar to its vanilla auto-encoder and regressor components. Our model is available in Orion, an open-source benchmarking tool for time series anomaly detection.
translated by 谷歌翻译
Unsupervised anomaly detection in time-series has been extensively investigated in the literature. Notwithstanding the relevance of this topic in numerous application fields, a complete and extensive evaluation of recent state-of-the-art techniques is still missing. Few efforts have been made to compare existing unsupervised time-series anomaly detection methods rigorously. However, only standard performance metrics, namely precision, recall, and F1-score are usually considered. Essential aspects for assessing their practical relevance are therefore neglected. This paper proposes an original and in-depth evaluation study of recent unsupervised anomaly detection techniques in time-series. Instead of relying solely on standard performance metrics, additional yet informative metrics and protocols are taken into account. In particular, (1) more elaborate performance metrics specifically tailored for time-series are used; (2) the model size and the model stability are studied; (3) an analysis of the tested approaches with respect to the anomaly type is provided; and (4) a clear and unique protocol is followed for all experiments. Overall, this extensive analysis aims to assess the maturity of state-of-the-art time-series anomaly detection, give insights regarding their applicability under real-world setups and provide to the community a more complete evaluation protocol.
translated by 谷歌翻译
我们如何检测异常:也就是说,与给定的一组高维数据(例如图像或传感器数据)显着不同的样品?这是众多应用程序的实际问题,也与使学习算法对意外输入更强大的目标有关。自动编码器是一种流行的方法,部分原因是它们的简单性和降低维度的能力。但是,异常评分函数并不适应正常样品范围内重建误差的自然变化,这阻碍了它们检测实际异常的能力。在本文中,我们从经验上证明了局部适应性对具有真实数据的实验中异常评分的重要性。然后,我们提出了新颖的自适应重建基于错误的评分方法,该方法根据潜在空间的重建误差的局部行为来适应其评分。我们表明,这改善了各种基准数据集中相关基线的异常检测性能。
translated by 谷歌翻译
近年来,提出了关于时间序列异常检测(TAD)的研究报告基准TAD数据集中的高F1分数,给出了TAD的清晰改进的印象。然而,大多数研究在评分之前应用了一个名为Point调整(PA)的特殊评估协议。在本文中,我们理论上实验揭示了PA协议具有高估检测性能的可能性;也就是说,即使是随机异常的分数也可以容易地变成最先进的TAD方法。因此,应用PA协议后的TAD方法的比较可能导致误导排名。此外,我们通过表示未经训练的模型对现有方法获得了可比的检测性能,即使禁止禁止,我们会解决现有TAD方法的潜力。根据我们的调查结果,我们提出了一种新的基线和评估议定书。我们预计我们的研究将有助于对TAD严格评估,并导致未来的研究进一步改善。
translated by 谷歌翻译
Aiot技术的最新进展导致利用机器学习算法来检测网络物理系统(CPS)的操作失败的越来越受欢迎。在其基本形式中,异常检测模块从物理工厂监控传感器测量和致动器状态,并检测这些测量中的异常以识别异常操作状态。然而,由于该模型必须在存在高度复杂的系统动态和未知量的传感器噪声的情况下准确地检测异常,构建有效的异常检测模型是挑战性的。在这项工作中,我们提出了一种新的时序序列异常检测方法,称为神经系统识别和贝叶斯滤波(NSIBF),其中特制的神经网络架构被构成系统识别,即捕获动态状态空间中CP的动态模型;然后,通过跟踪系统的隐藏状态的不确定性随着时间的推移,自然地施加贝叶斯滤波算法的顶部。我们提供定性的和定量实验,并在合成和三个现实世界CPS数据集上具有所提出的方法,表明NSIBF对最先进的方法比较了对CPS中异常检测的最新方法。
translated by 谷歌翻译
存在几种数据驱动方法,使我们的模型时间序列数据能够包括传统的基于回归的建模方法(即,Arima)。最近,在时间序列分析和预测的背景下介绍和探索了深度学习技术。询问的主要研究问题是在预测时间序列数据中的深度学习技术中的这些变化的性能。本文比较了两个突出的深度学习建模技术。比较了经常性的神经网络(RNN)长的短期记忆(LSTM)和卷积神经网络(CNN)基于基于TCN的时间卷积网络(TCN),并报告了它们的性能和训练时间。根据我们的实验结果,两个建模技术都表现了相当具有基于TCN的模型优于LSTM略微。此外,基于CNN的TCN模型比基于RNN的LSTM模型更快地构建了稳定的模型。
translated by 谷歌翻译
时间序列的异常提供了各个行业的关键方案的见解,从银行和航空航天到信息技术,安全和医学。但是,由于异常的定义,经常缺乏标签以及此类数据中存在的极为复杂的时间相关性,因此识别时间序列数据中的异常尤其具有挑战性。LSTM自动编码器是基于长期短期内存网络的异常检测的编码器传统方案,该方案学会重建时间序列行为,然后使用重建错误来识别异常。我们将Denoising Architecture作为对该LSTM编码模型模型的补充,并研究其对现实世界以及人为生成的数据集的影响。我们证明了所提出的体系结构既提高了准确性和训练速度,从而使LSTM自动编码器更有效地用于无监督的异常检测任务。
translated by 谷歌翻译
我们考虑为移动机器人构建视觉异常检测系统的问题。标准异常检测模型是使用仅由非异常数据组成的大型数据集训练的。但是,在机器人技术应用中,通常可以使用(可能很少)的异常示例。我们解决了利用这些数据以通过与Real-NVP损失共同使辅助外离群损失损失共同使实际NVP异常检测模型的性能提高性能的问题。我们在新的数据集(作为补充材料)上进行定量实验,该数据集在室内巡逻方案中设计为异常检测。在不连接测试集中,我们的方法优于替代方案,并表明即使少数异常框架也可以实现重大的性能改进。
translated by 谷歌翻译
鉴于在现实世界应用中缺乏异常情况,大多数文献一直集中在建模正态上。学到的表示形式可以将异常检测作为正态性模型进行训练,以捕获正常情况下的某些密钥数据规律性。在实际环境中,尤其是工业时间序列异常检测中,我们经常遇到有大量正常操作数据以及随时间收集的少量异常事件的情况。这种实际情况要求方法学来利用这些少量的异常事件来创建更好的异常检测器。在本文中,我们介绍了两种方法来满足这种实际情况的需求,并将其与最近开发的最新技术进行了比较。我们提出的方法锚定在具有自回归(AR)模型的正常运行的代表性学习以及损失组件上,以鼓励表示正常与几个积极示例的表示形式。我们将提出的方法应用于两个工业异常检测数据集,并与文献相比表现出有效的性能。我们的研究还指出了在实际应用中采用此类方法的其他挑战。
translated by 谷歌翻译
装有传感器,执行器和电子控制单元(ECU)的现代车辆可以分为几个称为功能工作组(FWGS)的操作子系统。这些FWG的示例包括发动机系统,变速箱,燃油系统,制动器等。每个FWG都有相关的传感器通道,可以衡量车辆操作条件。这种丰富的数据环境有利于预测维护(PDM)技术的开发。削弱各种PDM技术的是需要强大的异常检测模型,该模型可以识别出明显偏离大多数数据的事件或观察结果,并且不符合正常车辆操作行为的明确定义的概念。在本文中,我们介绍了车辆性能,可靠性和操作(VEPRO)数据集,并使用它来创建一种基于多阶段的异常检测方法。利用时间卷积网络(TCN),我们的异常检测系统可以达到96%的检测准确性,并准确预测91%的真实异常。当利用来自多个FWG的传感器通道时,我们的异常检测系统的性能会改善。
translated by 谷歌翻译
无监督的异常检测旨在通过在正常数据上训练来建立模型以有效地检测看不见的异常。尽管以前的基于重建的方法取得了富有成效的进展,但由于两个危急挑战,他们的泛化能力受到限制。首先,训练数据集仅包含正常模式,这限制了模型泛化能力。其次,现有模型学到的特征表示通常缺乏代表性,妨碍了保持正常模式的多样性的能力。在本文中,我们提出了一种称为自适应存储器网络的新方法,具有自我监督的学习(AMSL)来解决这些挑战,并提高无监督异常检测中的泛化能力。基于卷积的AutoEncoder结构,AMSL包含一个自我监督的学习模块,以学习一般正常模式和自适应内存融合模块来学习丰富的特征表示。四个公共多变量时间序列数据集的实验表明,与其他最先进的方法相比,AMSL显着提高了性能。具体而言,在具有9亿个样本的最大帽睡眠阶段检测数据集上,AMSL以精度和F1分数\ TextBF {4} \%+优于第二个最佳基线。除了增强的泛化能力之外,AMSL还针对输入噪声更加强大。
translated by 谷歌翻译