可靠的机器人抓握,特别是具有可变形物体(例如水果),由于与夹持器,未知的物体动态和可变物体几何形状的欠扰接触相互作用,仍然是一个具有挑战性的任务。在这项研究中,我们提出了一种用于刚性夹持器的基于变压器的机器人抓握框架,其利用触觉和可视信息来用于安全对象抓握。具体地,变压器模型通过执行两个预定义的探索动作(夹紧和滑动)来学习具有传感器反馈的物理特征嵌入,并通过多层的Perceptron(MLP)预测最终抓握结果,具有给定的抓握强度。使用这些预测,通过推断使用用于抓握任务的安全抓握强度的抓握器。与卷积复制网络相比,变压器模型可以在图像序列上捕获长期依赖性,并同时处理空间时间特征。我们首先在公共数据集上基准测试在公共数据集上进行滑动检测。在此之后,我们表明变压器模型在掌握精度和计算效率方面优于CNN + LSTM模型。我们还收集我们自己的水果掌握数据集,并使用所看到和看不见的果实的拟议框架进行在线掌握实验。我们的代码和数据集在Github上公开。
translated by 谷歌翻译
在本文中,我们提出了一个基于变压器的架构,即TF-Grasp,用于机器人Grasp检测。开发的TF-Grasp框架具有两个精心设计的设计,使其非常适合视觉抓握任务。第一个关键设计是,我们采用本地窗口的注意来捕获本地上下文信息和可抓取对象的详细特征。然后,我们将跨窗户注意力应用于建模遥远像素之间的长期依赖性。对象知识,环境配置和不同视觉实体之间的关系汇总以进行后续的掌握检测。第二个关键设计是,我们构建了具有跳过连接的层次编码器架构,从编码器到解码器提供了浅特征,以启用多尺度功能融合。由于具有强大的注意力机制,TF-Grasp可以同时获得局部信息(即对象的轮廓),并建模长期连接,例如混乱中不同的视觉概念之间的关系。广泛的计算实验表明,TF-GRASP在康奈尔(Cornell)和雅克(Jacquard)握把数据集上分别获得了较高的结果与最先进的卷积模型,并获得了97.99%和94.6%的较高精度。使用7DOF Franka Emika Panda机器人进行的现实世界实验也证明了其在各种情况下抓住看不见的物体的能力。代码和预培训模型将在https://github.com/wangshaosun/grasp-transformer上找到
translated by 谷歌翻译
机器人仿真一直是数据驱动的操作任务的重要工具。但是,大多数现有的仿真框架都缺乏与触觉传感器的物理相互作用的高效和准确模型,也没有逼真的触觉模拟。这使得基于触觉的操纵任务的SIM转交付仍然具有挑战性。在这项工作中,我们通过建模接触物理学来整合机器人动力学和基于视觉的触觉传感器的模拟。该触点模型使用机器人最终效应器上的模拟接触力来告知逼真的触觉输出。为了消除SIM到真实传输差距,我们使用现实世界数据校准了机器人动力学,接触模型和触觉光学模拟器的物理模拟器,然后我们在零摄像机上演示了系统的有效性 - 真实掌握稳定性预测任务,在各种对象上,我们达到平均准确性为90.7%。实验揭示了将我们的模拟框架应用于更复杂的操纵任务的潜力。我们在https://github.com/cmurobotouch/taxim/tree/taxim-robot上开放仿真框架。
translated by 谷歌翻译
软机器人抓手有助于富含接触的操作,包括对各种物体的强大抓握。然而,软抓手的有益依从性也会导致重大变形,从而使精确的操纵具有挑战性。我们提出视觉压力估计与控制(VPEC),这种方法可以使用外部摄像头的RGB图像施加的软握力施加的压力。当气动抓地力和肌腱握力与平坦的表面接触时,我们为视觉压力推断提供了结果。我们还表明,VPEC可以通过对推断压力图像的闭环控制进行精确操作。在我们的评估中,移动操纵器(来自Hello Robot的拉伸RE1)使用Visual Servoing在所需的压力下进行接触;遵循空间压力轨迹;并掌握小型低调的物体,包括microSD卡,一分钱和药丸。总体而言,我们的结果表明,对施加压力的视觉估计可以使软抓手能够执行精确操作。
translated by 谷歌翻译
我们提出了一个深度的视觉效果模型,以实时估算可变形容器内部的液体,以一种本体感受的方式融合了两种感官方式,即RGB摄像机的原始视觉输入和我们特定触觉传感器的触觉提示,额外的传感器校准。机器人系统是根据估计模型实时控制和调整的。我们作品的主要贡献和新颖性列出如下:1)通过开发具有多模式卷积网络的端到端预测模型来探索液体体积估算的一种本体感受方式,该模型在高精度上获得了高度的精度,该模型在周围的错误中获得了错误实验验证中的2 mL。 2)提出了一个多任务学习体系结构,可全面考虑分类和回归任务的损失,并相对评估收集的数据和实际机器人平台上每个变体的性能。 3)利用本体感受的机器人系统准确地服务和控制所需的液体,该液体连续地实时流入可变形容器。 4)根据实时液体体积预测,自适应调整抓地力计划,以实现更稳定的抓握和操作。
translated by 谷歌翻译
布料的机器人操作的应用包括织物制造业到处理毯子和洗衣。布料操作对于机器人而言是挑战,这主要是由于它们的高度自由度,复杂的动力学和折叠或皱巴巴配置时的严重自我闭合。机器人操作的先前工作主要依赖于视觉传感器,这可能会对细粒度的操纵任务构成挑战,例如从一堆布上抓住所需数量的布料层。在本文中,我们建议将触觉传感用于布操作;我们将触觉传感器(Resin)连接到弗兰卡机器人的两个指尖之一,并训练分类器,以确定机器人是否正在抓住特定数量的布料层。在测试时间实验中,机器人使用此分类器作为其政策的一部分,使用触觉反馈来掌握一两个布层,以确定合适的握把。实验结果超过180次物理试验表明,与使用图像分类器的方法相比,所提出的方法优于不使用触觉反馈并具有更好地看不见布的基准。代码,数据和视频可在https://sites.google.com/view/reskin-cloth上找到。
translated by 谷歌翻译
对于机器人来说,拾取透明的对象仍然是一项具有挑战性的任务。透明对象(例如反射和折射)的视觉属性使依赖相机传感的当前抓握方法无法检测和本地化。但是,人类可以通过首先观察其粗剖面,然后戳其感兴趣的区域以获得良好的抓握轮廓来很好地处理透明的物体。受到这一点的启发,我们提出了一个新颖的视觉引导触觉框架,以抓住透明的物体。在拟议的框架中,首先使用分割网络来预测称为戳戳区域的水平上部区域,在该区域中,机器人可以在该区域戳入对象以获得良好的触觉读数,同时导致对物体状态的最小干扰。然后,使用高分辨率胶触觉传感器进行戳戳。鉴于触觉阅读有所改善的当地概况,计划掌握透明物体的启发式掌握。为了减轻对透明对象的现实世界数据收集和标记的局限性,构建了一个大规模逼真的合成数据集。广泛的实验表明,我们提出的分割网络可以预测潜在的戳戳区域,平均平均精度(地图)为0.360,而视觉引导的触觉戳戳可以显着提高抓地力成功率,从38.9%到85.2%。由于其简单性,我们提出的方法也可以被其他力量或触觉传感器采用,并可以用于掌握其他具有挑战性的物体。本文中使用的所有材料均可在https://sites.google.com/view/tactilepoking上获得。
translated by 谷歌翻译
我们研究了如何将高分辨率触觉传感器与视觉和深度传感结合使用,以改善掌握稳定性预测。在模拟高分辨率触觉传感的最新进展,尤其是触觉模拟器,使我们能够评估如何结合感应方式训练神经网络。借助训练大型神经网络所需的大量数据,机器人模拟器提供了一种快速自动化数据收集过程的方法。我们通过消融研究扩展现有工作,并增加了从YCB基准组中获取的一组对象。我们的结果表明,尽管视觉,深度和触觉感测的组合为已知对象提供了最佳预测结果,但该网络未能推广到未知对象。我们的工作还解决了触觉模拟中机器人抓握的现有问题以及如何克服它们。
translated by 谷歌翻译
越来越多的人期望在对象属性具有高感知不确定性的越来越多的非结构化环境中操纵对象。这直接影响成功的对象操纵。在这项工作中,我们提出了一个基于增强的学习动作计划框架,用于对象操纵,该框架既利用了在现有的多感觉反馈,也可以使用学习的注意力引导的深层负担能力模型作为感知状态。可承受的模型是从多种感官方式中学到的,包括视觉和触摸(触觉和力/扭矩),旨在预测和指示具有相似外观的物体的多个负担能力(即抓地力和推动力)的可操作区域属性(例如,质量分布)。然后,对基于DQN的深钢筋学习算法进行培训,以选择成功对象操纵的最佳动作。为了验证提出的框架的性能,使用开放数据集和收集的数据集对我们的方法进行评估和基准测试。结果表明,所提出的方法和整体框架的表现优于现有方法,并实现更好的准确性和更高的效率。
translated by 谷歌翻译
触摸感在使人类能够理解和与周围环境互动方面发挥着关键作用。对于机器人,触觉感应也是不可替代的。在与物体交互时,触觉传感器为机器人提供了理解物体的有用信息,例如分布式压力,温度,振动和纹理。在机器人抓住期间,视力通常由其最终效应器封闭,而触觉感应可以测量视觉无法访问的区域。在过去的几十年中,已经为机器人开发了许多触觉传感器,并用于不同的机器人任务。在本章中,我们专注于使用触觉对机器人抓握的触觉,并研究近期对物质性质的触觉趋势。我们首先讨论了术语,即形状,姿势和材料特性对三个重要的物体特性的触觉感知。然后,我们通过触觉感应审查抓握稳定性预测的最新发展。在这些作品中,我们确定了在机器人抓握中协调视觉和触觉感应的要求。为了证明使用触觉传感来提高视觉感知,介绍了我们最近的抗议重建触觉触觉感知的发展。在所提出的框架中,首先利用相机视觉的大型接收领域以便快速搜索含有裂缝的候选区域,然后使用高分辨率光学触觉传感器来检查这些候选区域并重建精制的裂缝形状。实验表明,我们所提出的方法可以实现0.82mm至0.24mm的平均距离误差的显着降低,以便重建。最后,我们在讨论了对机器人任务中施加触觉感应的公开问题和未来方向的讨论。
translated by 谷歌翻译
这项工作提出了下一代人类机器人界面,只能通过视觉来推断和实现用户的操纵意图。具体而言,我们开发了一个集成了近眼跟踪和机器人操作的系统,以实现用户指定的操作(例如,抓取,拾取和位置等),在其中将视觉信息与人类的注意合并在一起,以创建为所需的映射机器人动作。为了实现视力指导的操纵,开发了一个头部安装的近眼跟踪设备,以实时跟踪眼球运动,以便可以确定用户的视觉注意力。为了提高抓地力性能,然后开发出基于变压器的GRASP模型。堆叠的变压器块用于提取层次特征,其中在每个阶段扩展了通道的体积,同时挤压了特征地图的分辨率。实验验证表明,眼球跟踪系统产生低的凝视估计误差,抓地力系统在多个握把数据集上产生有希望的结果。这项工作是基于凝视互动的辅助机器人的概念证明,该机器人具有巨大的希望,可以帮助老年人或上肢残疾在日常生活中。可在\ url {https://www.youtube.com/watch?v=yuz1hukyurm}上获得演示视频。
translated by 谷歌翻译
人类的物体感知能力令人印象深刻,当试图开发具有类似机器人的解决方案时,这变得更加明显。从人类如何将视觉和触觉用于对象感知和相关任务的灵感中,本文总结了机器人应用的多模式对象感知的当前状态。它涵盖了生物学灵感,传感器技术,数据集以及用于对象识别和掌握的感觉数据处理的各个方面。首先,概述了多模式对象感知的生物学基础。然后讨论了传感技术和数据收集策略。接下来,介绍了主要计算方面的介绍,突出显示了每个主要应用领域的一些代表性文章,包括对象识别,传输学习以及对象操纵和掌握。最后,在每个领域的当前进步中,本文概述了有希望的新研究指示。
translated by 谷歌翻译
The accurate detection and grasping of transparent objects are challenging but of significance to robots. Here, a visual-tactile fusion framework for transparent object grasping under complex backgrounds and variant light conditions is proposed, including the grasping position detection, tactile calibration, and visual-tactile fusion based classification. First, a multi-scene synthetic grasping dataset generation method with a Gaussian distribution based data annotation is proposed. Besides, a novel grasping network named TGCNN is proposed for grasping position detection, showing good results in both synthetic and real scenes. In tactile calibration, inspired by human grasping, a fully convolutional network based tactile feature extraction method and a central location based adaptive grasping strategy are designed, improving the success rate by 36.7% compared to direct grasping. Furthermore, a visual-tactile fusion method is proposed for transparent objects classification, which improves the classification accuracy by 34%. The proposed framework synergizes the advantages of vision and touch, and greatly improves the grasping efficiency of transparent objects.
translated by 谷歌翻译
We describe a learning-based approach to handeye coordination for robotic grasping from monocular images. To learn hand-eye coordination for grasping, we trained a large convolutional neural network to predict the probability that task-space motion of the gripper will result in successful grasps, using only monocular camera images and independently of camera calibration or the current robot pose. This requires the network to observe the spatial relationship between the gripper and objects in the scene, thus learning hand-eye coordination. We then use this network to servo the gripper in real time to achieve successful grasps. To train our network, we collected over 800,000 grasp attempts over the course of two months, using between 6 and 14 robotic manipulators at any given time, with differences in camera placement and hardware. Our experimental evaluation demonstrates that our method achieves effective real-time control, can successfully grasp novel objects, and corrects mistakes by continuous servoing.
translated by 谷歌翻译
Cloth in the real world is often crumpled, self-occluded, or folded in on itself such that key regions, such as corners, are not directly graspable, making manipulation difficult. We propose a system that leverages visual and tactile perception to unfold the cloth via grasping and sliding on edges. By doing so, the robot is able to grasp two adjacent corners, enabling subsequent manipulation tasks like folding or hanging. As components of this system, we develop tactile perception networks that classify whether an edge is grasped and estimate the pose of the edge. We use the edge classification network to supervise a visuotactile edge grasp affordance network that can grasp edges with a 90% success rate. Once an edge is grasped, we demonstrate that the robot can slide along the cloth to the adjacent corner using tactile pose estimation/control in real time. See http://nehasunil.com/visuotactile/visuotactile.html for videos.
translated by 谷歌翻译
通过触觉反馈感知物体滑移的能力使人类能够完成复杂的操纵任务,包括保持稳定的掌握。尽管触觉信息用于许多应用程序,但触觉传感器尚未在工业机器人设置中广泛部署。挑战的一部分在于从触觉数据流中识别滑移和其他事件。在本文中,我们提出了一种基于学习的方法,可以使用气压触觉传感器检测滑移。这些传感器具有许多理想的属性,包括高耐用性和可靠性,并且由廉价的现成组件构建。我们训练一个时间卷积神经网络来检测滑动,达到高检测精度,同时表现出稳健性,以对滑动运动的速度和方向。此外,我们在涉及各种常见对象的两项操纵任务上测试了探测器,并证明了对训练期间看不到的现实情况的成功概括。我们认为,气压触觉传感技术与数据驱动的学习相结合,适用于许多操纵任务,例如滑移补偿。
translated by 谷歌翻译
Vision-based tactile sensors have gained extensive attention in the robotics community. The sensors are highly expected to be capable of extracting contact information i.e. haptic information during in-hand manipulation. This nature of tactile sensors makes them a perfect match for haptic feedback applications. In this paper, we propose a contact force estimation method using the vision-based tactile sensor DIGIT, and apply it to a position-force teleoperation architecture for force feedback. The force estimation is done by building a depth map for DIGIT gel surface deformation measurement and applying a regression algorithm on estimated depth data and ground truth force data to get the depth-force relationship. The experiment is performed by constructing a grasping force feedback system with a haptic device as a leader robot and a parallel robot gripper as a follower robot, where the DIGIT sensor is attached to the tip of the robot gripper to estimate the contact force. The preliminary results show the capability of using the low-cost vision-based sensor for force feedback applications.
translated by 谷歌翻译
当人类掌握现实世界中的物体时,我们经常移动手臂将物体固定在可以使用它的不同姿势中。相比之下,典型的实验室设置仅研究举起后立即研究抓握的稳定性,而没有任何随后的臂重置。但是,由于重力扭矩和握力接触力可能会完全改变,因此抓紧稳定性可能会根据物体的固定姿势而差异很大。为了促进对持有姿势如何影响掌握稳定性的研究,我们提出了Poseit,这是一种新型的多模式数据集,其中包含从抓住对象的完整周期收集的视觉和触觉数据,将手臂重新放置到其中一个采样姿势,并将其重新放置到其中一个采样的姿势中,并摇动物体。使用Poseit的数据,我们可以制定和应对预测特定固定姿势是否稳定的抓握对象的任务。我们培训一个LSTM分类器,该分类器在拟议的任务上达到85%的准确性。我们的实验结果表明,接受Poseit训练的多模式模型比使用唯一视觉或触觉数据具有更高的精度,并且我们的分类器也可以推广到看不见的对象和姿势。
translated by 谷歌翻译
Humans use all of their senses to accomplish different tasks in everyday activities. In contrast, existing work on robotic manipulation mostly relies on one, or occasionally two modalities, such as vision and touch. In this work, we systematically study how visual, auditory, and tactile perception can jointly help robots to solve complex manipulation tasks. We build a robot system that can see with a camera, hear with a contact microphone, and feel with a vision-based tactile sensor, with all three sensory modalities fused with a self-attention model. Results on two challenging tasks, dense packing and pouring, demonstrate the necessity and power of multisensory perception for robotic manipulation: vision displays the global status of the robot but can often suffer from occlusion, audio provides immediate feedback of key moments that are even invisible, and touch offers precise local geometry for decision making. Leveraging all three modalities, our robotic system significantly outperforms prior methods.
translated by 谷歌翻译
Current learning-based robot grasping approaches exploit human-labeled datasets for training the models. However, there are two problems with such a methodology: (a) since each object can be grasped in multiple ways, manually labeling grasp locations is not a trivial task; (b) human labeling is biased by semantics. While there have been attempts to train robots using trial-and-error experiments, the amount of data used in such experiments remains substantially low and hence makes the learner prone to over-fitting. In this paper, we take the leap of increasing the available training data to 40 times more than prior work, leading to a dataset size of 50K data points collected over 700 hours of robot grasping attempts. This allows us to train a Convolutional Neural Network (CNN) for the task of predicting grasp locations without severe overfitting. In our formulation, we recast the regression problem to an 18way binary classification over image patches. We also present a multi-stage learning approach where a CNN trained in one stage is used to collect hard negatives in subsequent stages. Our experiments clearly show the benefit of using large-scale datasets (and multi-stage training) for the task of grasping. We also compare to several baselines and show state-of-the-art performance on generalization to unseen objects for grasping.
translated by 谷歌翻译