当人类掌握现实世界中的物体时,我们经常移动手臂将物体固定在可以使用它的不同姿势中。相比之下,典型的实验室设置仅研究举起后立即研究抓握的稳定性,而没有任何随后的臂重置。但是,由于重力扭矩和握力接触力可能会完全改变,因此抓紧稳定性可能会根据物体的固定姿势而差异很大。为了促进对持有姿势如何影响掌握稳定性的研究,我们提出了Poseit,这是一种新型的多模式数据集,其中包含从抓住对象的完整周期收集的视觉和触觉数据,将手臂重新放置到其中一个采样姿势,并将其重新放置到其中一个采样的姿势中,并摇动物体。使用Poseit的数据,我们可以制定和应对预测特定固定姿势是否稳定的抓握对象的任务。我们培训一个LSTM分类器,该分类器在拟议的任务上达到85%的准确性。我们的实验结果表明,接受Poseit训练的多模式模型比使用唯一视觉或触觉数据具有更高的精度,并且我们的分类器也可以推广到看不见的对象和姿势。
translated by 谷歌翻译
我们研究了如何将高分辨率触觉传感器与视觉和深度传感结合使用,以改善掌握稳定性预测。在模拟高分辨率触觉传感的最新进展,尤其是触觉模拟器,使我们能够评估如何结合感应方式训练神经网络。借助训练大型神经网络所需的大量数据,机器人模拟器提供了一种快速自动化数据收集过程的方法。我们通过消融研究扩展现有工作,并增加了从YCB基准组中获取的一组对象。我们的结果表明,尽管视觉,深度和触觉感测的组合为已知对象提供了最佳预测结果,但该网络未能推广到未知对象。我们的工作还解决了触觉模拟中机器人抓握的现有问题以及如何克服它们。
translated by 谷歌翻译
Current learning-based robot grasping approaches exploit human-labeled datasets for training the models. However, there are two problems with such a methodology: (a) since each object can be grasped in multiple ways, manually labeling grasp locations is not a trivial task; (b) human labeling is biased by semantics. While there have been attempts to train robots using trial-and-error experiments, the amount of data used in such experiments remains substantially low and hence makes the learner prone to over-fitting. In this paper, we take the leap of increasing the available training data to 40 times more than prior work, leading to a dataset size of 50K data points collected over 700 hours of robot grasping attempts. This allows us to train a Convolutional Neural Network (CNN) for the task of predicting grasp locations without severe overfitting. In our formulation, we recast the regression problem to an 18way binary classification over image patches. We also present a multi-stage learning approach where a CNN trained in one stage is used to collect hard negatives in subsequent stages. Our experiments clearly show the benefit of using large-scale datasets (and multi-stage training) for the task of grasping. We also compare to several baselines and show state-of-the-art performance on generalization to unseen objects for grasping.
translated by 谷歌翻译
As the basis for prehensile manipulation, it is vital to enable robots to grasp as robustly as humans. In daily manipulation, our grasping system is prompt, accurate, flexible and continuous across spatial and temporal domains. Few existing methods cover all these properties for robot grasping. In this paper, we propose a new methodology for grasp perception to enable robots these abilities. Specifically, we develop a dense supervision strategy with real perception and analytic labels in the spatial-temporal domain. Additional awareness of objects' center-of-mass is incorporated into the learning process to help improve grasping stability. Utilization of grasp correspondence across observations enables dynamic grasp tracking. Our model, AnyGrasp, can generate accurate, full-DoF, dense and temporally-smooth grasp poses efficiently, and works robustly against large depth sensing noise. Embedded with AnyGrasp, we achieve a 93.3% success rate when clearing bins with over 300 unseen objects, which is comparable with human subjects under controlled conditions. Over 900 MPPH is reported on a single-arm system. For dynamic grasping, we demonstrate catching swimming robot fish in the water.
translated by 谷歌翻译
机器人仿真一直是数据驱动的操作任务的重要工具。但是,大多数现有的仿真框架都缺乏与触觉传感器的物理相互作用的高效和准确模型,也没有逼真的触觉模拟。这使得基于触觉的操纵任务的SIM转交付仍然具有挑战性。在这项工作中,我们通过建模接触物理学来整合机器人动力学和基于视觉的触觉传感器的模拟。该触点模型使用机器人最终效应器上的模拟接触力来告知逼真的触觉输出。为了消除SIM到真实传输差距,我们使用现实世界数据校准了机器人动力学,接触模型和触觉光学模拟器的物理模拟器,然后我们在零摄像机上演示了系统的有效性 - 真实掌握稳定性预测任务,在各种对象上,我们达到平均准确性为90.7%。实验揭示了将我们的模拟框架应用于更复杂的操纵任务的潜力。我们在https://github.com/cmurobotouch/taxim/tree/taxim-robot上开放仿真框架。
translated by 谷歌翻译
布料的机器人操作的应用包括织物制造业到处理毯子和洗衣。布料操作对于机器人而言是挑战,这主要是由于它们的高度自由度,复杂的动力学和折叠或皱巴巴配置时的严重自我闭合。机器人操作的先前工作主要依赖于视觉传感器,这可能会对细粒度的操纵任务构成挑战,例如从一堆布上抓住所需数量的布料层。在本文中,我们建议将触觉传感用于布操作;我们将触觉传感器(Resin)连接到弗兰卡机器人的两个指尖之一,并训练分类器,以确定机器人是否正在抓住特定数量的布料层。在测试时间实验中,机器人使用此分类器作为其政策的一部分,使用触觉反馈来掌握一两个布层,以确定合适的握把。实验结果超过180次物理试验表明,与使用图像分类器的方法相比,所提出的方法优于不使用触觉反馈并具有更好地看不见布的基准。代码,数据和视频可在https://sites.google.com/view/reskin-cloth上找到。
translated by 谷歌翻译
抓握是通过在一组触点上施加力和扭矩来挑选对象的过程。深度学习方法的最新进展允许在机器人对象抓地力方面快速进步。我们在过去十年中系统地调查了出版物,特别感兴趣使用最终效果姿势的所有6度自由度抓住对象。我们的综述发现了四种用于机器人抓钩的常见方法:基于抽样的方法,直接回归,强化学习和示例方法。此外,我们发现了围绕抓握的两种“支持方法”,这些方法使用深入学习来支持抓握过程,形状近似和负担能力。我们已经将本系统评论(85篇论文)中发现的出版物提炼为十个关键要点,我们认为对未来的机器人抓握和操纵研究至关重要。该调查的在线版本可从https://rhys-newbury.github.io/projects/6dof/获得
translated by 谷歌翻译
机器人外科助理(RSAs)通常用于通过专家外科医生进行微创手术。然而,长期以来充满了乏味和重复的任务,如缝合可以导致外科医生疲劳,激励缝合的自动化。随着薄反射针的视觉跟踪极具挑战性,在未反射对比涂料的情况下修改了针。作为朝向无修改针的缝合子任务自动化的步骤,我们提出了休斯顿:切换未经修改,外科手术,工具障碍针,一个问题和算法,它使用学习的主动传感策略与立体声相机本地化并对齐针头进入另一臂的可见和可访问的姿势。为了补偿机器人定位和针头感知误差,然后算法执行使用多个摄像机的高精度抓握运动。在使用Da Vinci研究套件(DVRK)的物理实验中,休斯顿成功通过了96.7%的成功率,并且能够在故障前平均地在臂32.4倍之间顺序地执行切换。在培训中看不见的针头,休斯顿实现了75-92.9%的成功率。据我们所知,这项工作是第一个研究未修改的手术针的切换。查看https://tinyurl.com/huston-surgery用于额外​​的材料。
translated by 谷歌翻译
We describe a learning-based approach to handeye coordination for robotic grasping from monocular images. To learn hand-eye coordination for grasping, we trained a large convolutional neural network to predict the probability that task-space motion of the gripper will result in successful grasps, using only monocular camera images and independently of camera calibration or the current robot pose. This requires the network to observe the spatial relationship between the gripper and objects in the scene, thus learning hand-eye coordination. We then use this network to servo the gripper in real time to achieve successful grasps. To train our network, we collected over 800,000 grasp attempts over the course of two months, using between 6 and 14 robotic manipulators at any given time, with differences in camera placement and hardware. Our experimental evaluation demonstrates that our method achieves effective real-time control, can successfully grasp novel objects, and corrects mistakes by continuous servoing.
translated by 谷歌翻译
Reliably planning fingertip grasps for multi-fingered hands lies as a key challenge for many tasks including tool use, insertion, and dexterous in-hand manipulation. This task becomes even more difficult when the robot lacks an accurate model of the object to be grasped. Tactile sensing offers a promising approach to account for uncertainties in object shape. However, current robotic hands tend to lack full tactile coverage. As such, a problem arises of how to plan and execute grasps for multi-fingered hands such that contact is made with the area covered by the tactile sensors. To address this issue, we propose an approach to grasp planning that explicitly reasons about where the fingertips should contact the estimated object surface while maximizing the probability of grasp success. Key to our method's success is the use of visual surface estimation for initial planning to encode the contact constraint. The robot then executes this plan using a tactile-feedback controller that enables the robot to adapt to online estimates of the object's surface to correct for errors in the initial plan. Importantly, the robot never explicitly integrates object pose or surface estimates between visual and tactile sensing, instead it uses the two modalities in complementary ways. Vision guides the robots motion prior to contact; touch updates the plan when contact occurs differently than predicted from vision. We show that our method successfully synthesises and executes precision grasps for previously unseen objects using surface estimates from a single camera view. Further, our approach outperforms a state of the art multi-fingered grasp planner, while also beating several baselines we propose.
translated by 谷歌翻译
我们研究了复杂几何物体的机器人堆叠问题。我们提出了一个挑战和多样化的这些物体,这些物体被精心设计,以便要求超出简单的“拾取”解决方案之外的策略。我们的方法是加强学习(RL)方法与基于视觉的互动政策蒸馏和模拟到现实转移相结合。我们的学习政策可以有效地处理现实世界中的多个对象组合,并展示各种各样的堆叠技能。在一个大型的实验研究中,我们调查在模拟中学习这种基于视觉的基于视觉的代理的选择,以及对真实机器人的最佳转移产生了什么影响。然后,我们利用这些策略收集的数据并通过离线RL改善它们。我们工作的视频和博客文章作为补充材料提供。
translated by 谷歌翻译
在本文中,我们探讨了机器人是否可以学会重新应用一组多样的物体以实现各种所需的掌握姿势。只要机器人的当前掌握姿势未能执行所需的操作任务,需要重新扫描。具有这种能力的赋予机器人具有在许多领域中的应用,例如制造或国内服务。然而,由于日常物体中的几何形状和状态和行动空间的高维度,这是一个具有挑战性的任务。在本文中,我们提出了一种机器人系统,用于将物体的部分点云和支持环境作为输入,输出序列和放置操作的序列来转换到所需的对象掌握姿势。关键技术包括神经稳定放置预测器,并通过利用和改变周围环境来引发基于图形的解决方案。我们介绍了一个新的和具有挑战性的合成数据集,用于学习和评估所提出的方法。我们展示了我们提出的系统与模拟器和现实世界实验的有效性。我们的项目网页上有更多视频和可视化示例。
translated by 谷歌翻译
软机器人抓手有助于富含接触的操作,包括对各种物体的强大抓握。然而,软抓手的有益依从性也会导致重大变形,从而使精确的操纵具有挑战性。我们提出视觉压力估计与控制(VPEC),这种方法可以使用外部摄像头的RGB图像施加的软握力施加的压力。当气动抓地力和肌腱握力与平坦的表面接触时,我们为视觉压力推断提供了结果。我们还表明,VPEC可以通过对推断压力图像的闭环控制进行精确操作。在我们的评估中,移动操纵器(来自Hello Robot的拉伸RE1)使用Visual Servoing在所需的压力下进行接触;遵循空间压力轨迹;并掌握小型低调的物体,包括microSD卡,一分钱和药丸。总体而言,我们的结果表明,对施加压力的视觉估计可以使软抓手能够执行精确操作。
translated by 谷歌翻译
人类手可以通过仅基于触觉感测的堆掌握一下目标数量的物体。为此,机器人需要在堆中掌握,从提升之前感测掌握中的物体的数量,并预测升降后将保持掌握的物体数量。这是一个具有挑战性的问题,因为在进行预测时,机器人手仍然在桩中,并且抓握中的物体对视觉系统不观察到。此外,在从堆中抬起之前手掌抓住的一些物体可能会在手中抬起时掉落。出现这种情况,因为它们被堆中的其他物体支持而不是手指。因此,机器人手应该在提升之前使用其触觉传感器来感测掌握的物体的数量。本文介绍了用于解决此问题的新型多目标抓取分析方法。它们包括掌握体积计算,触觉力分析和数据驱动的深度学习方法。该方法已经在Barrett手上实施,然后在模拟中评估和具有机器人系统的真实设置。评估结果得出结论,一旦BarretT手掌掌握了多个物体,数据驱动的模型可以在提升之前预测,在提升之后将保留在手中的物体的数量。用于我们方法的根均方误差为30.74,用于模拟的立方体和0.58个,球的距离,1.06个球体,对于真实系统的立方体,1.45。
translated by 谷歌翻译
可靠的机器人抓握,特别是具有可变形物体(例如水果),由于与夹持器,未知的物体动态和可变物体几何形状的欠扰接触相互作用,仍然是一个具有挑战性的任务。在这项研究中,我们提出了一种用于刚性夹持器的基于变压器的机器人抓握框架,其利用触觉和可视信息来用于安全对象抓握。具体地,变压器模型通过执行两个预定义的探索动作(夹紧和滑动)来学习具有传感器反馈的物理特征嵌入,并通过多层的Perceptron(MLP)预测最终抓握结果,具有给定的抓握强度。使用这些预测,通过推断使用用于抓握任务的安全抓握强度的抓握器。与卷积复制网络相比,变压器模型可以在图像序列上捕获长期依赖性,并同时处理空间时间特征。我们首先在公共数据集上基准测试在公共数据集上进行滑动检测。在此之后,我们表明变压器模型在掌握精度和计算效率方面优于CNN + LSTM模型。我们还收集我们自己的水果掌握数据集,并使用所看到和看不见的果实的拟议框架进行在线掌握实验。我们的代码和数据集在Github上公开。
translated by 谷歌翻译
在现实世界中,教授多指的灵巧机器人在现实世界中掌握物体,这是一个充满挑战的问题,由于其高维状态和动作空间。我们提出了一个机器人学习系统,该系统可以进行少量的人类示范,并学会掌握在某些被遮挡的观察结果的情况下掌握看不见的物体姿势。我们的系统利用了一个小型运动捕获数据集,并为多指的机器人抓手生成具有多种多样且成功的轨迹的大型数据集。通过添加域随机化,我们表明我们的数据集提供了可以将其转移到策略学习者的强大抓地力轨迹。我们训练一种灵活的抓紧策略,该策略将对象的点云作为输入,并预测连续的动作以从不同初始机器人状态掌握对象。我们在模拟中评估了系统对22多伏的浮动手的有效性,并在现实世界中带有kuka手臂的23多杆Allegro机器人手。从我们的数据集中汲取的政策可以很好地概括在模拟和现实世界中的看不见的对象姿势
translated by 谷歌翻译
我们考虑对物体抓住的任务,可以用多种抓握类型的假肢手抓住。在这种情况下,传达预期的抓取类型通常需要高的用户认知负载,可以减少采用共享自主框架。在其中,所谓的眼睛内部系统会根据手腕上的相机的视觉输入自动控制掌握前的手工整形。在本文中,我们提出了一种基于目光的学习方法,用于从RGB序列中进行手部形状分类。与以前的工作不同,我们设计了该系统,以支持以不同的掌握类型掌握每个被认为的对象部分的可能性。为了克服缺乏此类数据并减少对训练系统繁琐的数据收集会话的需求,我们设计了一条呈现手动轨迹合成视觉序列的管道。我们开发了一种传感器的设置,以获取真正的人类握把序列以进行基准测试,并表明,与实际数据相比,使用合成数据集训练的实用案例相比,与对真实数据培训的模型相比,使用合成数据集训练的模型获得了更好的概括性能。我们最终将模型整合到Hannes假肢手中,并显示其实际有效性。我们使代码和数据集公开可用,以复制提出的结果。
translated by 谷歌翻译
人类和许多动物都表现出稳健的能力来操纵不同的物体,通常与他们的身体直接和有时与工具间接地进行操作。这种灵活性可能是由物理处理的基本一致性,例如接触和力闭合。通过将工具视为我们的机构的扩展来启发,我们提出了工具 - 作为实施例(TAE),用于处理同一表示空间中的手动对象和工具对象交互的基于工具的操作策略的参数化。结果是单一策略,可以在机器人上递归地应用于使用结束效果来操纵对象,并使用对象作为工具,即新的最终效果,以操纵其他对象。通过对不同实施例的共享经验进行掌握或推动,我们的政策表现出比训练单独的政策更高的性能。我们的框架可以利用将对启用工具的实施例的不同分辨率的所有经验用于每个操纵技能的单个通用策略。 https://sites.google.com/view/recursivemanipulation的视频
translated by 谷歌翻译
在本文中,我们介绍了DA $^2 $,这是第一个大型双臂灵敏性吸引数据集,用于生成最佳的双人握把对,用于任意大型对象。该数据集包含大约900万的平行jaw grasps,由6000多个对象生成,每个对象都有各种抓紧敏度度量。此外,我们提出了一个端到端的双臂掌握评估模型,该模型在该数据集的渲染场景上训练。我们利用评估模型作为基准,通过在线分析和真实的机器人实验来显示这一新颖和非平凡数据集的价值。所有数据和相关的代码将在https://sites.google.com/view/da2dataset上开源。
translated by 谷歌翻译
人类的物体感知能力令人印象深刻,当试图开发具有类似机器人的解决方案时,这变得更加明显。从人类如何将视觉和触觉用于对象感知和相关任务的灵感中,本文总结了机器人应用的多模式对象感知的当前状态。它涵盖了生物学灵感,传感器技术,数据集以及用于对象识别和掌握的感觉数据处理的各个方面。首先,概述了多模式对象感知的生物学基础。然后讨论了传感技术和数据收集策略。接下来,介绍了主要计算方面的介绍,突出显示了每个主要应用领域的一些代表性文章,包括对象识别,传输学习以及对象操纵和掌握。最后,在每个领域的当前进步中,本文概述了有希望的新研究指示。
translated by 谷歌翻译