神经网络倾向于在训练数据的主要部分中表现出的类和潜在属性之间的虚假相关性,这破坏了其概括能力。本文提出了一种新的方法,用于培训错误的分类器,没有虚假属性标签。该方法的关键思想是采用分类器委员会作为辅助模块,该模块可以识别偏置冲突的数据,即没有虚假相关性的数据,并在训练主要分类器时向它们分配了很大的权重。该委员会被学到了一个自举的合奏,因此大多数分类器都具有偏见和多样化,并且故意无法相应地预测偏见的偏见。因此,预测难度委员会的共识为识别和加权偏见冲突数据提供了可靠的提示。此外,该委员会还接受了从主要分类器转移的知识的培训,以便它逐渐与主要分类器一起变得偏见,并强调随着培训的进行而更加困难的数据。在五个现实世界数据集中,我们的方法在没有像我们这样的虚假属性标签的现有方法上优于现有方法,甚至偶尔会超越依靠偏见标签的方法。
translated by 谷歌翻译
已经发现深层图像分类器可以从数据集中学习偏差。为了减轻偏见,大多数以前的方法都需要标签受保护的属性(例如,年龄,肤色)为全套,这有两个限制:1)当标签不可用时,它是不可行的; 2)它们无法缓解未知的偏见 - 人类没有先入为主的偏见。为了解决这些问题,我们提出了偏见的替代网络(Debian),该网络包括两个网络 - 一个发现者和一个分类器。通过以另一种方式培训,发现者试图找到分类器的多个未知偏见,而无需任何偏见注释,分类器的目的是删除发现者确定的偏见。虽然先前的作品评估了单个偏差的结果,但我们创建了多色MNIST数据集,以更好地缓解多偏差设置中的多个偏差,这不仅揭示了以前的方法中的问题,而且还展示了Debian的优势。在同时识别和减轻多种偏见时。我们进一步对现实世界数据集进行了广泛的实验,表明Debian中的发现者可以识别人类可能很难找到的未知偏见。关于辩护,Debian实现了强烈的偏见缓解绩效。
translated by 谷歌翻译
Empirical studies suggest that machine learning models trained with empirical risk minimization (ERM) often rely on attributes that may be spuriously correlated with the class labels. Such models typically lead to poor performance during inference for data lacking such correlations. In this work, we explicitly consider a situation where potential spurious correlations are present in the majority of training data. In contrast with existing approaches, which use the ERM model outputs to detect the samples without spurious correlations, and either heuristically upweighting or upsampling those samples; we propose the logit correction (LC) loss, a simple yet effective improvement on the softmax cross-entropy loss, to correct the sample logit. We demonstrate that minimizing the LC loss is equivalent to maximizing the group-balanced accuracy, so the proposed LC could mitigate the negative impacts of spurious correlations. Our extensive experimental results further reveal that the proposed LC loss outperforms the SoTA solutions on multiple popular benchmarks by a large margin, an average 5.5% absolute improvement, without access to spurious attribute labels. LC is also competitive with oracle methods that make use of the attribute labels. Code is available at https://github.com/shengliu66/LC.
translated by 谷歌翻译
在图像分类中,“ debiasing”旨在训练分类器,以免对数据集偏差,数据样本的外围属性与目标类别之间的强相关性。例如,即使数据集中的青蛙类主要由具有沼泽背景的青蛙图像组成(即,偏见与一致的样本),也应该能够在海滩上正确地对青蛙进行正确分类(即,偏见的样品, )。最近的辩论方法通常使用两个组件进行偏见,一个有偏见的模型$ f_b $和一个模型$ f_d $。 $ f_b $经过培训,可以专注于偏见的样本(即过度适合偏见),而$ f_d $主要通过专注于$ f_b $未能学习的样品,主要接受了偏见的样本培训,导致$ f_d $。不太容易受到数据集偏差的影响。虽然最先进的偏见技术旨在更好地培训$ f_d $,但我们专注于培训$ f_b $,这是迄今为止被忽视的组件。我们的实证分析表明,从$ f_b $的培训设置中删除偏见的样本对于改善$ f_d $的偏见性能很重要。这是由于以下事实:偏置冲突样品会干扰$ f_b $的偏见,因为这些样本不包括偏差属性。为此,我们提出了一种简单而有效的数据样本选择方法,该方法可以删除偏置冲突的样本,以构建一个偏置放大数据集用于培训$ f_b $。我们的数据示例选择方法可以直接应用于现有的基于重新加权的偏差方法,从而获得一致的性能提升并实现合成和现实世界数据集的最新性能。
translated by 谷歌翻译
虽然神经网络在平均病例的性能方面对分类任务的成功显着,但它们通常无法在某些数据组上表现良好。这样的组信息可能是昂贵的;因此,即使在培训数据不可用的组标签不可用,较稳健性和公平的最新作品也提出了改善最差组性能的方法。然而,这些方法通常在培训时间使用集团信息的表现不佳。在这项工作中,我们假设没有组标签的较大数据集一起访问少量组标签。我们提出了一个简单的两步框架,利用这个部分组信息来提高最差组性能:训练模型以预测训练数据的丢失组标签,然后在强大的优化目标中使用这些预测的组标签。从理论上讲,我们在最差的组性能方面为我们的方法提供泛化界限,展示了泛化误差如何相对于培训点总数和具有组标签的培训点的数量。凭经验,我们的方法优于不使用群组信息的基线表达,即使只有1-33%的积分都有组标签。我们提供消融研究,以支持我们框架的稳健性和可扩展性。
translated by 谷歌翻译
分布式概括(OOD)都是关于对环境变化的学习不变性。如果每个类中的上下文分布均匀分布,则OOD将是微不足道的,因为由于基本原则,可以轻松地删除上下文:类是上下文不变的。但是,收集这种平衡的数据集是不切实际的。学习不平衡的数据使模型偏见对上下文,从而伤害了OOD。因此,OOD的关键是上下文平衡。我们认为,在先前工作中广泛采用的假设,可以直接从偏见的类预测中注释或估算上下文偏差,从而使上下文不完整甚至不正确。相比之下,我们指出了上述原则的另一面:上下文对于类也不变,这激励我们将类(已经被标记为已标记的)视为不同环境以解决上下文偏见(没有上下文标签)。我们通过最大程度地减少阶级样本相似性的对比损失,同时确保这种相似性在所有类别中不变,从而实现这一想法。在具有各种上下文偏见和域间隙的基准测试中,我们表明,配备了我们上下文估计的简单基于重新加权的分类器实现了最新的性能。我们在https://github.com/simpleshinobu/irmcon上提供了附录中的理论理由和代码。
translated by 谷歌翻译
尽管无偏见的机器学习模型对于许多应用程序至关重要,但偏见是一个人为定义的概念,可以在任务中有所不同。只有输入标签对,算法可能缺乏足够的信息来区分稳定(因果)特征和不稳定(虚假)特征。但是,相关任务通常具有类似的偏见 - 我们可以利用在转移环境中开发稳定的分类器的观察结果。在这项工作中,我们明确通知目标分类器有关源任务中不稳定功能的信息。具体而言,我们得出一个表示,该表示通过对比源任务中的不同数据环境来编码不稳定的功能。我们通过根据此表示形式将目标任务的数据聚类来实现鲁棒性,并最大程度地降低这些集群中最坏情况的风险。我们对文本和图像分类进行评估。经验结果表明,我们的算法能够在合成生成的环境和现实环境的目标任务上保持鲁棒性。我们的代码可在https://github.com/yujiabao/tofu上找到。
translated by 谷歌翻译
在偏置数据集中培训时,分类器会偏差。作为一种补救措施,我们建议学习分裂(LS),这是一种用于自动偏置检测的算法。给定一个具有输入标签对的数据集,LS学会了将该数据集分开,以便在训练分训练上训练的预测因素不能推广到测试分配。该性能差距表明,数据集中的测试拆分代表性不足,这是潜在偏差的信号。识别不可替代的分裂是具有挑战性的,因为我们对偏见没有注释。在这项工作中,我们表明,测试拆分中每个示例的预测正确性可以用作弱监督的来源:如果我们移动正确预测的示例,将概括性能下降错误预测。 LS是任务不合时宜的,可以应用于任何监督的学习问题,从自然语言理解和图像分类到分子财产预测。经验结果表明,LS能够产生与人类识别偏见相关的惊人挑战分裂。此外,我们证明,将强大的学习算法(例如群DRO)与LS启用自动偏差确定的拆分相结合。与以前的最先进相比,当训练和验证过程中偏见的来源未知时,我们显着提高了最差的组绩效(平均为23.4%)。
translated by 谷歌翻译
尽管能够与过度能力网络概括,但深神经网络通常会学会滥用数据中的虚假偏见而不是使用实际的任务相关信息。由于此类快捷方式仅在收集的数据集中有效,因此由此产生的偏置模型在现实世界的投入上表现不佳,或导致意外的社交影响,例如性别歧视。为了抵消偏差的影响,现有方法可以利用辅助信息,这在实践中很少可获得,或者在训练数据中的无偏见样本中筛选,希望能够充分存在清洁样品。但是,这些关于数据的推定并不总是保证。在本文中,我们提出了通过生成偏差变换〜(CDVG)对比下展,该〜(CDVG)能够在现有的方法中经营,其中现有方法由于未偏置的偏差样品而不足的预设而下降。通过我们的观察,不仅如前所述的鉴别模型,而且生成模型倾向于关注偏差,CDVG使用翻译模型来将样本中的偏置转换为另一种偏差模式,同时保留任务相关信息。 。通过对比学习,我们将转化的偏见视图与另一个学习偏见,学习偏见不变的表示。综合和现实世界数据集的实验结果表明,我们的框架优于目前的最先进,并且有效地阻止模型即使在无偏差样本极为稀缺时也会被偏置。
translated by 谷歌翻译
深度神经网络令人惊奇地遭受数据集偏见,这对模型鲁棒性,泛化和公平性有害。在这项工作中,我们提出了一个两级的脱扎方案,以防止顽固的未知偏差。通过分析有偏置模型的存在的因素,我们设计了一种小说学习目标,通过依赖单独的偏见,无法达到。具体而言,使用所提出的梯度对准(GA)实现了脱叠模型,该梯度对准(GA)动态地平衡了偏置对齐和偏见冲突的样本的贡献(在整个整个训练过程中,在整个训练过程中,强制执行模型以利用内部提示进行公平的决定。虽然在真实世界的情景中,潜在的偏差非常难以发现并对手动标记昂贵。我们进一步提出了通过对等挑选和培训集合来提出自动偏见冲突的样本挖掘方法,而无需先前了解偏见信息。各种数据中的多个数据集进行的实验表明了我们拟议计划的有效性和稳健性,该计划成功减轻了未知偏差的负面影响,实现了最先进的性能。
translated by 谷歌翻译
许多数据集被指定:给定任务存在多个同样可行的解决方案。对于学习单个假设的方法,指定的指定可能是有问题的,因为实现低训练损失的不同功能可以集中在不同的预测特征上,从而在分布数据的数据上产生明显变化的预测。我们提出了Divdis,这是一个简单的两阶段框架,首先通过利用测试分布中的未标记数据来学习多种假设,以实现任务。然后,我们通过使用其他标签的形式或检查功能可视化的形式选择最小的其他监督来选择一个发现的假设之一来消除歧义。我们证明了Divdis找到在图像分类中使用强大特征的假设和自然语言处理问题的能力。
translated by 谷歌翻译
接受经验风险最小化(ERM)训练的机器学习模型的预测性能可以大大降解分配变化。在训练数据集中存在虚假相关性的存在导致ERM训练的模型在对不存在此类相关性的少数群体评估时表现出很高的损失。已经进行了广泛的尝试来开发改善最差的鲁棒性的方法。但是,他们需要每个培训输入的组信息,或者至少需要一个带有组标签的验证设置来调整其超参数,这可能是昂贵的或未知的。在本文中,我们应对在培训或验证期间没有小组注释的情况下提高组鲁棒性的挑战。为此,我们建议根据``识别''模型提取的特征的革兰氏集矩阵将训练数据集分为组,并根据这些伪组应用强大的优化。在不可用的小组标签的现实情况下,我们的实验表明,我们的方法不仅可以改善对ERM的稳健性,而且还优于所有最近的基线
translated by 谷歌翻译
我们通过对杂散相关性的因果解释提出了一种信息 - 理论偏置测量技术,这通过利用条件相互信息来识别特征级算法偏压有效。尽管已经提出了几种偏置测量方法并广泛地研究以在各种任务中实现诸如面部识别的各种任务中的算法公平,但它们的准确性或基于Logit的度量易于导致普通预测得分调整而不是基本偏差减少。因此,我们设计针对算法偏差的新型扩张框架,其包括由所提出的信息 - 理论偏置测量方法导出的偏压正则化损耗。此外,我们介绍了一种基于随机标签噪声的简单而有效的无监督的脱叠技术,这不需要明确的偏置信息监督。通过多种标准基准测试的广泛实验,在不同的现实情景中验证了所提出的偏差测量和脱叠方法。
translated by 谷歌翻译
Models trained via empirical risk minimization (ERM) are known to rely on spurious correlations between labels and task-independent input features, resulting in poor generalization to distributional shifts. Group distributionally robust optimization (G-DRO) can alleviate this problem by minimizing the worst-case loss over a set of pre-defined groups over training data. G-DRO successfully improves performance of the worst-group, where the correlation does not hold. However, G-DRO assumes that the spurious correlations and associated worst groups are known in advance, making it challenging to apply it to new tasks with potentially multiple unknown spurious correlations. We propose AGRO -- Adversarial Group discovery for Distributionally Robust Optimization -- an end-to-end approach that jointly identifies error-prone groups and improves accuracy on them. AGRO equips G-DRO with an adversarial slicing model to find a group assignment for training examples which maximizes worst-case loss over the discovered groups. On the WILDS benchmark, AGRO results in 8% higher model performance on average on known worst-groups, compared to prior group discovery approaches used with G-DRO. AGRO also improves out-of-distribution performance on SST2, QQP, and MS-COCO -- datasets where potential spurious correlations are as yet uncharacterized. Human evaluation of ARGO groups shows that they contain well-defined, yet previously unstudied spurious correlations that lead to model errors.
translated by 谷歌翻译
神经网络通常使预测依赖于数据集的虚假相关性,而不是感兴趣的任务的内在特性,面对分布外(OOD)测试数据的急剧下降。现有的De-Bias学习框架尝试通过偏置注释捕获特定的DataSet偏差,它们无法处理复杂的“ood方案”。其他人在低能力偏置模型或损失上隐含地识别数据集偏置,但在训练和测试数据来自相同分布时,它们会降低。在本文中,我们提出了一般的贪婪去偏见学习框架(GGD),它贪婪地训练偏置模型和基础模型,如功能空间中的梯度下降。它鼓励基础模型专注于用偏置模型难以解决的示例,从而仍然在测试阶段中的杂散相关性稳健。 GGD在很大程度上提高了各种任务的模型的泛化能力,但有时会过度估计偏置水平并降低在分配测试。我们进一步重新分析了GGD的集合过程,并将课程正规化为由课程学习启发的GGD,这取得了良好的分配和分发性能之间的权衡。对图像分类的广泛实验,对抗问题应答和视觉问题应答展示了我们方法的有效性。 GGD可以在特定于特定于任务的偏置模型的设置下学习更强大的基础模型,其中具有现有知识和自组合偏置模型而无需先验知识。
translated by 谷歌翻译
Standard training via empirical risk minimization (ERM) can produce models that achieve high accuracy on average but low accuracy on certain groups, especially in the presence of spurious correlations between the input and label. Prior approaches that achieve high worst-group accuracy, like group distributionally robust optimization (group DRO) require expensive group annotations for each training point, whereas approaches that do not use such group annotations typically achieve unsatisfactory worst-group accuracy. In this paper, we propose a simple two-stage approach, JTT, that first trains a standard ERM model for several epochs, and then trains a second model that upweights the training examples that the first model misclassified. Intuitively, this upweights examples from groups on which standard ERM models perform poorly, leading to improved worst-group performance. Averaged over four image classification and natural language processing tasks with spurious correlations, JTT closes 75% of the gap in worst-group accuracy between standard ERM and group DRO, while only requiring group annotations on a small validation set in order to tune hyperparameters.
translated by 谷歌翻译
现有的长尾分类(LT)方法仅着眼于解决阶级的失衡,即头部类别的样本多于尾巴类,但忽略了属性的不平衡。实际上,即使班级平衡,由于各种属性,每个类中的样本仍然可能会长时间尾。请注意,后者在根本上比前者更加普遍和具有挑战性,因为属性不仅是大多数数据集的隐含,而且在组合上也具有复杂性,因此平衡的昂贵。因此,我们引入了一个新的研究问题:广义的长尾分类(GLT),共同考虑两种失衡。通过“广义”,我们的意思是,GLT方法自然应该解决传统的LT,但反之亦然。毫不奇怪,我们发现大多数class LT方法在我们提出的两个基准中退化:Imagenet-GLT和Mscoco-GLT。我们认为这是因为他们过分强调了班级分布的调整,同时忽略了学习属性不变的功能。为此,我们提出了一种不变特征学习(IFL)方法,作为GLT的第一个强基线。 IFL首先从不完美的预测中发现具有不同类内分布的环境,然后在其中学习不变的功能。有希望的是,作为改进的功能主链,IFL提高了所有LT阵容:一个/两阶段的重新平衡,增强和合奏。代码和基准可在GitHub上获得:https://github.com/kaihuatang/generalized-long-tailed-benchmarks.pytorch
translated by 谷歌翻译
知识蒸馏(KD)是一个有效的框架,旨在将有意义的信息从大型老师转移到较小的学生。通常,KD通常涉及如何定义和转移知识。以前的KD方法通常着重于挖掘各种形式的知识,例如功能地图和精致信息。但是,知识源自主要监督任务,因此是高度特定于任务的。在自我监督的代表学习的最新成功中,我们提出了一项辅助自我实施的增强任务,以指导网络学习更多有意义的功能。因此,我们可以从KD的这项任务中得出软性自我实施的增强分布作为更丰富的黑暗知识。与以前的知识不同,此分布编码从监督和自我监督的特征学习中编码联合知识。除了知识探索之外,我们建议在各个隐藏层上附加几个辅助分支,以充分利用分层特征图。每个辅助分支都被指导学习自学的增强任务,并将这种分布从教师到学生提炼。总体而言,我们称我们的KD方法为等级自我实施的增强知识蒸馏(HSSAKD)。标准图像分类的实验表明,离线和在线HSSAKD都在KD领域达到了最先进的表现。对象检测的进一步转移实验进一步验证了HSSAKD可以指导网络学习更好的功能。该代码可在https://github.com/winycg/hsakd上找到。
translated by 谷歌翻译
Trying to capture the sample-label relationship, conditional generative models often end up inheriting the spurious correlation in the training dataset, giving label-conditional distributions that are severely imbalanced in another latent attribute. To mitigate such undesirable correlations engraved into generative models, which we call spurious causality, we propose a general two-step strategy. (a) Fairness Intervention (FI): Emphasize the minority samples that are hard to be generated due to the spurious correlation in the training dataset. (b) Corrective Sampling (CS): Filter the generated samples explicitly to follow the desired label-conditional latent attribute distribution. We design the fairness intervention for various degrees of supervision on the spurious attribute, including unsupervised, weakly-supervised, and semi-supervised scenarios. Our experimental results show that the proposed FICS can successfully resolve the spurious correlation in generated samples on various datasets.
translated by 谷歌翻译
Improperly constructed datasets can result in inaccurate inferences. For instance, models trained on biased datasets perform poorly in terms of generalization (i.e., dataset bias). Recent debiasing techniques have successfully achieved generalization performance by underestimating easy-to-learn samples (i.e., bias-aligned samples) and highlighting difficult-to-learn samples (i.e., bias-conflicting samples). However, these techniques may fail owing to noisy labels, because the trained model recognizes noisy labels as difficult-to-learn and thus highlights them. In this study, we find that earlier approaches that used the provided labels to quantify difficulty could be affected by the small proportion of noisy labels. Furthermore, we find that running denoising algorithms before debiasing is ineffective because denoising algorithms reduce the impact of difficult-to-learn samples, including valuable bias-conflicting samples. Therefore, we propose an approach called denoising after entropy-based debiasing, i.e., DENEB, which has three main stages. (1) The prejudice model is trained by emphasizing (bias-aligned, clean) samples, which are selected using a Gaussian Mixture Model. (2) Using the per-sample entropy from the output of the prejudice model, the sampling probability of each sample that is proportional to the entropy is computed. (3) The final model is trained using existing denoising algorithms with the mini-batches constructed by following the computed sampling probability. Compared to existing debiasing and denoising algorithms, our method achieves better debiasing performance on multiple benchmarks.
translated by 谷歌翻译