Efficient motion planning algorithms are of central importance for deploying robots in the real world. Unfortunately, these algorithms often drastically reduce the dimensionality of the problem for the sake of feasibility, thereby foregoing optimal solutions. This limitation is most readily observed in agile robots, where the solution space can have multiple additional dimensions. Optimal control approaches partially solve this problem by finding optimal solutions without sacrificing the complexity of the environment, but do not meet the efficiency demands of real-world applications. This work proposes an approach to resolve these issues simultaneously by training a machine learning model on the outputs of an optimal control approach.
translated by 谷歌翻译
This paper presents a safety-critical locomotion control framework for quadrupedal robots. Our goal is to enable quadrupedal robots to safely navigate in cluttered environments. To tackle this, we introduce exponential Discrete Control Barrier Functions (exponential DCBFs) with duality-based obstacle avoidance constraints into a Nonlinear Model Predictive Control (NMPC) with Whole-Body Control (WBC) framework for quadrupedal locomotion control. This enables us to use polytopes to describe the shapes of the robot and obstacles for collision avoidance while doing locomotion control of quadrupedal robots. Compared to most prior work, especially using CBFs, that utilize spherical and conservative approximation for obstacle avoidance, this work demonstrates a quadrupedal robot autonomously and safely navigating through very tight spaces in the real world. (Our open-source code is available at github.com/HybridRobotics/quadruped_nmpc_dcbf_duality, and the video is available at youtu.be/p1gSQjwXm1Q.)
translated by 谷歌翻译
这项工作将控制屏障功能(CBF)与全身控制器结合在一起,以使MIT类人动物自我避免。现有的反应性控制器进行自我避免,不能保证无碰撞的轨迹,因为它们不利用机器人的完整动态,从而损害了运动学的可行性。相比之下,拟议的CBF-WBC控制器可以实时理解机器人的动力学不足,以确保无碰撞运动。该方法的有效性在模拟中得到了验证。首先,一个简单的手段实验表明,CBF-WBC使机器人的手能够偏离不可行的参考轨迹,以避免自我收集。其次,CBF-WBC与设计用于动态运动的线性模型预测控制器(LMPC)结合使用,并使用CBF-WBC来跟踪LMPC预测。质心动量任务还用于产生有助于人形运动和干扰恢复的手臂运动。步行实验表明,CBF允许质心动量任务产生可行的手臂运动,并在高级规划师提供的脚步位置或摇摆轨迹时避免腿部自我收获,对于真正的机器人来说是不可行的。
translated by 谷歌翻译
由于机器人的脚下缺乏致动,全球地位控制是一个挑战性问题。在本文中,我们应用基于混合的倒立摆(H唇)踩踏3D废除后的双模型机器人进行全球位置控制。H-Lip行走的步骤步骤(S2S)动态近似于机器人行走的实际S2S动态,其中步长被认为是输入。因此,基于H唇的反馈控制器大致控制机器人表现得像H唇,它在误差不变集中保持的差异。模型预测控制(MPC)应用于3D中的全球位置控制的H唇。然后,H唇踩踏然后产生用于跟踪机器人的所需步进尺寸。此外,转向行为与步骤规划集成。拟议的框架在与概念验证实验中的模拟中验证了在模拟中的3D欠扰动的双模型机器人Cassie。
translated by 谷歌翻译
强化学习(RL)见证了四足动物的大步进展,在可靠的SIM转移到现实的政策转移方面持续进展。但是,重用另一个机器人的政策仍然是一个挑战,这可以节省重新培训的时间。在这项工作中,我们提出了一个用于零射击政策重新定位的框架,其中可以在不同形状和尺寸的机器人之间转移多种运动技能。新框架以系统整合RL和模型预测控制(MPC)的计划和控制管道为中心。计划阶段采用RL来生成动态合理的轨迹以及联系时间表,避免了接触序列优化的组合复杂性。然后,将这些信息用于播种MPC,以通过新的混合运动动力学(HKD)模型稳定和鲁棒性地推出策略,该模型隐含地优化了立足点位置。硬件结果表明能够将政策从A1和Laikago机器人转移到MIT MIT MINI CHEETAH机器人,而无需重新调整政策。
translated by 谷歌翻译
Designing a local planner to control tractor-trailer vehicles in forward and backward maneuvering is a challenging control problem in the research community of autonomous driving systems. Considering a critical situation in the stability of tractor-trailer systems, a practical and novel approach is presented to design a non-linear MPC(NMPC) local planner for tractor-trailer autonomous vehicles in both forward and backward maneuvering. The tractor velocity and steering angle are considered to be control variables. The proposed NMPC local planner is designed to handle jackknife situations, avoiding multiple static obstacles, and path following in both forward and backward maneuvering. The challenges mentioned above are converted into a constrained problem that can be handled simultaneously by the proposed NMPC local planner. The direct multiple shooting approach is used to convert the optimal control problem(OCP) into a non-linear programming problem(NLP) that IPOPT solvers can solve in CasADi. The controller performance is evaluated through different backup and forward maneuvering scenarios in the Gazebo simulation environment in real-time. It achieves asymptotic stability in avoiding static obstacles and accurate tracking performance while respecting path constraints. Finally, the proposed NMPC local planner is integrated with an open-source autonomous driving software stack called AutowareAi.
translated by 谷歌翻译
This work is on vision-based planning strategies for legged robots that separate locomotion planning into foothold selection and pose adaptation. Current pose adaptation strategies optimize the robot's body pose relative to given footholds. If these footholds are not reached, the robot may end up in a state with no reachable safe footholds. Therefore, we present a Vision-Based Terrain-Aware Locomotion (ViTAL) strategy that consists of novel pose adaptation and foothold selection algorithms. ViTAL introduces a different paradigm in pose adaptation that does not optimize the body pose relative to given footholds, but the body pose that maximizes the chances of the legs in reaching safe footholds. ViTAL plans footholds and poses based on skills that characterize the robot's capabilities and its terrain-awareness. We use the 90 kg HyQ and 140 kg HyQReal quadruped robots to validate ViTAL, and show that they are able to climb various obstacles including stairs, gaps, and rough terrains at different speeds and gaits. We compare ViTAL with a baseline strategy that selects the robot pose based on given selected footholds, and show that ViTAL outperforms the baseline.
translated by 谷歌翻译
具有长飞行阶段的高度敏捷杂技动作需要完美的时机,高精度,以及整个身体运动的协调。为了解决这些挑战,本文提出了一个统一的时序和轨迹优化框架,可用于执行激进的3D跳跃的腿机器人。在我们的方法中,我们首先利用了有效的优化框架,使用简化的刚体动力学来解决机器人身体的接触时间和参考轨迹。然后使用该模块的解决方案基于机器人的全部非线性动力学制定全身轨迹优化。这种组合允许我们有效地优化接触定时,同时保证可以在硬件中实现的跳跃轨迹的准确性。我们在A1机器人模型上验证了所提出的框架,以获得各种3D跳跃任务,如双后跳和双桶分别从2M和0.8米的高海拔滚动。对于不同的3D跳跃动作,还成功地进行了实验验证,例如来自盒子或对角线跳转的桶卷。
translated by 谷歌翻译
通信网络中的时间延迟是通过边缘部署机器人的主要关注点之一。本文提出了一个多阶段的非线性模型预测控制(NMPC),该控制能够处理不同的网络引起的时间延迟,以建立控制框架,以确保无碰撞的无碰撞微型航空车(MAVS)导航。这项研究介绍了一种新颖的方法,该方法通过与现有的典型多阶段NMPC相反的离散化场景树来考虑不同的采样时间,在这种情况下,系统不确定性是由场景树建模的。此外,该方法根据通信链接中时间延迟的概率考虑了多阶段NMPC方案的自适应权重。由于多阶段NMPC,获得的最佳控制动作对于多个采样时间有效。最后,在各种测试和不同的模拟环境中证明了所提出的新型控制框架的总体有效性。
translated by 谷歌翻译
最佳控制是一种成功的方法,可以为复杂机器人产生运动,特别是对于有腿运动。然而,这些技术往往太慢而无法实时运行,以便模型预测控制或者需要大大简化动力学模型。在这项工作中,我们展示了一种学习来预测问题值函数的梯度和Hessian的方法,可以用一步二次程序来快速解决预测控制问题。此外,我们的方法能够满足像摩擦锥和单侧约束的约束,这对于高动态机器机器任务很重要。我们展示了我们在模拟中的方法和实际的四轮车机器人执行小跑和边界运动的能力。
translated by 谷歌翻译
在本文中,我们基于非线性模型预测控制(NMPC)方法提出了一种分散的控制方法,该方法采用屏障证书在具有静态和/或动态障碍的未知环境中安全导航的多个非独立轮式移动机器人。该方法将学习的屏障功能(LBF)纳入NMPC设计中,以确保安全机器人导航,即防止机器人与其他机器人和障碍物的碰撞。我们将我们提出的控制方法称为NMPC-LBF。由于每个机器人都没有关于障碍物和其他机器人的先验知识,因此我们使用每个机器人实时运行的深神经网络(DEEPNN),仅从机器人的刺激镜头和探针测量中学习屏障功能(BF)。深文经过训练,可以学习分离安全和不安全地区的BF。在不同情况下,我们对模拟和实际Turtlebot3汉堡机器人实施了建议的方法。实施结果显示了NMPC-LBF方法在确保机器人安全导航方面的有效性。
translated by 谷歌翻译
本文提出了一个最佳的运动计划框架,以自动生成多功能的四足动物跳跃运动(例如,翻转,旋转)。通过质心动力学的跳跃运动被配制为受机器人基诺动力约束的12维黑盒优化问题。基于梯度的方法在解决轨迹优化方面取得了巨大成功(TO),但是,需要先验知识(例如,参考运动,联系时间表),并导致次级最佳解决方案。新提出的框架首先采用了基于启发式的优化方法来避免这些问题。此外,针对机器人地面反作用力(GRF)计划中的基于启发式算法的算法创建了优先级的健身函数,增强收敛性和搜索性能。由于基于启发式的算法通常需要大量的时间,因此计划离线运动并作为运动前库存储。选择器旨在自动选择用用户指定或感知信息作为输入的动作。该框架仅通过几项具有挑战性的跳跃动作在开源迷你室中的简单连续跟踪PD控制器进行了成功验证,包括跳过30厘米高度的窗户形状的障碍物,并在矩形障碍物上与左悬挂式障碍物。 27厘米高。
translated by 谷歌翻译
由于机器人动力学中的固有非线性,腿部机器人全身动作的在线计划具有挑战性。在这项工作中,我们提出了一个非线性MPC框架,该框架可以通过有效利用机器人动力学结构来在线生成全身轨迹。Biconmp用于在真正的四倍机器人上生成各种环状步态,其性能在不同的地形上进行了评估,对抗不同步态之间的不可预见的推动力并在线过渡。此外,提出了双孔在机器人上产生非平凡无环的全身动态运动的能力。同样的方法也被用来在人体机器人(TALOS)上产生MPC的各种动态运动,并在模拟中产生另一个四倍的机器人(Anymal)。最后,报告并讨论了对计划范围和频率对非线性MPC框架的影响的广泛经验分析。
translated by 谷歌翻译
本文着重于影响弹性的移动机器人的碰撞运动计划和控制的新兴范式转移,并开发了一个统一的层次结构框架,用于在未知和部分观察的杂物空间中导航。在较低级别上,我们开发了一种变形恢复控制和轨迹重新启动策略,该策略处理可能在本地运行时发生的碰撞。低级系统会积极检测碰撞(通过内部内置的移动机器人上的嵌入式霍尔效应传感器),使机器人能够从其内部恢复,并在本地调整后影响后的轨迹。然后,在高层,我们提出了一种基于搜索的计划算法,以确定如何最好地利用潜在的碰撞来改善某些指标,例如控制能量和计算时间。我们的方法建立在A*带有跳跃点的基础上。我们生成了一种新颖的启发式功能,并进行了碰撞检查和调整技术,从而使A*算法通过利用和利用可能的碰撞来更快地收敛到达目标。通过将全局A*算法和局部变形恢复和重新融合策略以及该框架的各个组件相结合而生成的整体分层框架在模拟和实验中都经过了广泛的测试。一项消融研究借鉴了与基于搜索的最先进的避免碰撞计划者(用于整体框架)的链接,以及基于搜索的避免碰撞和基于采样的碰撞 - 碰撞 - 全球规划师(对于更高的较高的碰撞 - 等级)。结果证明了我们的方法在未知环境中具有碰撞的运动计划和控制的功效,在2D中运行的一类撞击弹性机器人具有孤立的障碍物。
translated by 谷歌翻译
在本文中,我们提出了一种在动态环境中进行多动能计划的新方法。环境被表示为时间占用网格,它赋予了所有障碍的当前以及未来/预测状态。该方法基于以前的安全走廊生成和多旋转计划的工作,以避免移动和静态障碍。它首先生成了目标的全球途径,该途径没有考虑到环境的动态方面。然后,我们使用时间安全走廊来生成机器人将来可以在离散瞬间进入的安全空间。最后,我们在优化公式中使用了时间安全走廊,该公式说明了多电流动力学以及所有障碍,以生成由多旋翼控制器执行的轨迹。我们在模拟中显示了我们方法的性能。
translated by 谷歌翻译
Motion planning is challenging for autonomous systems in multi-obstacle environments due to nonconvex collision avoidance constraints. Directly applying numerical solvers to these nonconvex formulations fails to exploit the constraint structures, resulting in excessive computation time. In this paper, we present an accelerated collision-free motion planner, namely regularized dual alternating direction method of multipliers (RDADMM or RDA for short), for the model predictive control (MPC) based motion planning problem. The proposed RDA addresses nonconvex motion planning via solving a smooth biconvex reformulation via duality and allows the collision avoidance constraints to be computed in parallel for each obstacle to reduce computation time significantly. We validate the performance of the RDA planner through path-tracking experiments with car-like robots in simulation and real world setting. Experimental results show that the proposed methods can generate smooth collision-free trajectories with less computation time compared with other benchmarks and perform robustly in cluttered environments.
translated by 谷歌翻译
本文提出了一种有效且安全的方法,可以避免基于LiDAR的静态和动态障碍。首先,点云用于生成实时的本地网格映射以进行障碍物检测。然后,障碍物由DBSCAN算法聚集,并用最小边界椭圆(MBE)包围。此外,进行数据关联是为了使每个MBE与当前帧中的障碍匹配。考虑到MBE作为观察,Kalman滤波器(KF)用于估计和预测障碍物的运动状态。通过这种方式,可以将远期时间域中每个障碍物的轨迹作为一组椭圆化。由于MBE的不确定性,参数化椭圆形的半肢和半尺寸轴被扩展以确保安全性。我们扩展了传统的控制屏障功能(CBF),并提出动态控制屏障功能(D-CBF)。我们将D-CBF与模型预测控制(MPC)结合起来,以实施安全至关重要的动态障碍。进行了模拟和实际场景中的实验,以验证我们算法的有效性。源代码发布以供社区参考。
translated by 谷歌翻译
策略搜索和模型预测控制〜(MPC)是机器人控制的两个不同范式:策略搜索具有使用经验丰富的数据自动学习复杂策略的强度,而MPC可以使用模型和轨迹优化提供最佳控制性能。开放的研究问题是如何利用并结合两种方法的优势。在这项工作中,我们通过使用策略搜索自动选择MPC的高级决策变量提供答案,这导致了一种新的策略搜索 - 用于模型预测控制框架。具体地,我们将MPC作为参数化控制器配制,其中难以优化的决策变量表示为高级策略。这种制定允许以自我监督的方式优化政策。我们通过专注于敏捷无人机飞行中的具有挑战性的问题来验证这一框架:通过快速的盖茨飞行四轮车。实验表明,我们的控制器在模拟和现实世界中实现了鲁棒和实时的控制性能。拟议的框架提供了合并学习和控制的新视角。
translated by 谷歌翻译
通常,可以将最佳运动计划作为本地和全球执行。在这样的计划中,支持本地或全球计划技术的选择主要取决于环境条件是动态的还是静态的。因此,最适当的选择是与全球计划一起使用本地计划或本地计划。当设计最佳运动计划是本地或全球的时,要记住的关键指标是执行时间,渐近最优性,对动态障碍的快速反应。与其他方法相比,这种计划方法可以更有效地解决上述目标指标,例如路径计划,然后进行平滑。因此,这项研究的最重要目标是分析相关文献,以了解运动计划,特别轨迹计划,问题,当应用于实时生成最佳轨迹的多局部航空车(MAV),影响力(MAV)时如何提出问题。列出的指标。作为研究的结果,轨迹计划问题被分解为一组子问题,详细列出了解决每个问题的方法列表。随后,总结了2010年至2022年最突出的结果,并以时间表的形式呈现。
translated by 谷歌翻译
这项工作介绍了模型预测控制(MPC)的公式,该公式适应基于任务的模型的复杂性,同时保持可行性和稳定性保证。现有的MPC实现通常通过缩短预测范围或简化模型来处理计算复杂性,这两者都可能导致不稳定。受到行为经济学,运动计划和生物力学相关方法的启发,我们的方法通过简单模型解决了MPC问题,用于在地平线区域的动力学和约束,而这种模型是可行的,并且不存在该模型的复杂模型。该方法利用计划和执行的交织来迭代识别这些区域,如果它们满足确切的模板/锚关系,可以安全地简化这些区域。我们表明,该方法不会损害系统的稳定性和可行性特性,并在仿真实验中衡量在四足动物上执行敏捷行为的仿真实验中的性能。我们发现,与固定复杂性实现相比,这种自适应方法可以实现更多的敏捷运动,并扩大可执行任务的范围。
translated by 谷歌翻译