This paper presents a safety-critical locomotion control framework for quadrupedal robots. Our goal is to enable quadrupedal robots to safely navigate in cluttered environments. To tackle this, we introduce exponential Discrete Control Barrier Functions (exponential DCBFs) with duality-based obstacle avoidance constraints into a Nonlinear Model Predictive Control (NMPC) with Whole-Body Control (WBC) framework for quadrupedal locomotion control. This enables us to use polytopes to describe the shapes of the robot and obstacles for collision avoidance while doing locomotion control of quadrupedal robots. Compared to most prior work, especially using CBFs, that utilize spherical and conservative approximation for obstacle avoidance, this work demonstrates a quadrupedal robot autonomously and safely navigating through very tight spaces in the real world. (Our open-source code is available at github.com/HybridRobotics/quadruped_nmpc_dcbf_duality, and the video is available at youtu.be/p1gSQjwXm1Q.)
translated by 谷歌翻译
本文解决了机器人的问题,可以协作将电缆带到指定的目标位置,同时避免实时碰撞。引入电缆(与刚性链接相反)使机器人团队能够通过电缆的松弛/拉特开关更改其内在尺寸,从而使机器人团队能够穿越狭窄的空间。但是,这是一个具有挑战性的问题,因为混合模式开关以及多个机器人和负载之间的动态耦合。以前解决此类问题的尝试是离线执行的,并且不考虑避免在线障碍。在本文中,我们介绍了一个级联的计划方案,并采用平行的集中式轨迹优化,涉及混合模式开关。我们还每个机器人开发了一组分散的计划者,这使我们可以解决在线协作负载操作问题的方法。我们开发并演示了第一个能够移动有线电视载荷的首个协作自治框架之一,该框架太重了,无法通过一个机器人移动,通过狭窄空间,具有实时反馈和实验中的反应性计划。
translated by 谷歌翻译
在粗糙的地形上的动态运动需要准确的脚部放置,避免碰撞以及系统的动态不足的计划。在存在不完美且常常不完整的感知信息的情况下,可靠地优化此类动作和互动是具有挑战性的。我们提出了一个完整的感知,计划和控制管道,可以实时优化机器人所有自由度的动作。为了减轻地形所带来的数值挑战,凸出不平等约束的顺序被提取为立足性可行性的局部近似值,并嵌入到在线模型预测控制器中。每个高程映射预先计算了步骤性分类,平面分割和签名的距离场,以最大程度地减少优化过程中的计算工作。多次射击,实时迭代和基于滤波器的线路搜索的组合用于可靠地以高速率解决该法式问题。我们在模拟中的间隙,斜率和踏上石头的情况下验证了所提出的方法,并在Anymal四倍的平台上进行实验,从而实现了最新的动态攀登。
translated by 谷歌翻译
对于多面体之间的障碍物躲避开发的控制器是在狭小的空间导航一个具有挑战性的和必要的问题。传统的方法只能制定的避障问题,因为离线优化问题。为了应对这些挑战,我们提出用非光滑控制屏障功能多面体之间的避障,它可以实时与基于QP的优化问题来解决基于二元安全关键最优控制。一种双优化问题被引入到表示被施加到构造控制屏障功能多面体和用于双形式的拉格朗日函数之间的最小距离。我们验证了避开障碍物与在走廊环境受控的L形(沙发形)机器人建议的双配制剂。据我们所知,这是第一次,实时紧避障与非保守的演习是在移动沙发(钢琴)与非线性动力学问题来实现的。
translated by 谷歌翻译
在腿的运动中重新规划对于追踪所需的用户速度,在适应地形并拒绝外部干扰的同时至关重要。在这项工作中,我们提出并测试了实验中的实时非线性模型预测控制(NMPC),用于腿部机器人,以实现各种地形上的动态运动。我们引入了一种基于移动性的标准来定义NMPC成本,增强了二次机器人的运动,同时最大化腿部移动性并提高对地形特征的适应。我们的NMPC基于实时迭代方案,使我们能够以25美元的价格重新计划在线,\ Mathrm {Hz} $ 2 $ 2 $ 2美元的预测地平线。我们使用在质量框架中心中定义的单个刚体动态模型,以提高计算效率。在仿真中,测试NMPC以横穿一组不同尺寸的托盘,走进V形烟囱,并在崎岖的地形上招揽。在真实实验中,我们展示了我们的NMPC与移动功能的有效性,使IIT为87美元\,\ Mathrm {kg} $四分之一的机器人HIQ,以实现平坦地形上的全方位步行,横穿静态托盘,并适应在散步期间重新定位托盘。
translated by 谷歌翻译
在腿部机器人技术中,计划和执行敏捷的机动演习一直是一个长期的挑战。它需要实时得出运动计划和本地反馈政策,以处理动力学动量的非物质。为此,我们提出了一个混合预测控制器,该控制器考虑了机器人的致动界限和全身动力学。它将反馈政策与触觉信息相结合,以在本地预测未来的行动。由于采用可行性驱动的方法,它在几毫秒内收敛。我们的预测控制器使Anymal机器人能够在现实的场景中生成敏捷操作。关键要素是跟踪本地反馈策略,因为与全身控制相反,它们达到了所需的角动量。据我们所知,我们的预测控制器是第一个处理驱动限制,生成敏捷的机动操作以及执行低级扭矩控制的最佳反馈策略,而无需使用单独的全身控制器。
translated by 谷歌翻译
本文提出了一种有效且安全的方法,可以避免基于LiDAR的静态和动态障碍。首先,点云用于生成实时的本地网格映射以进行障碍物检测。然后,障碍物由DBSCAN算法聚集,并用最小边界椭圆(MBE)包围。此外,进行数据关联是为了使每个MBE与当前帧中的障碍匹配。考虑到MBE作为观察,Kalman滤波器(KF)用于估计和预测障碍物的运动状态。通过这种方式,可以将远期时间域中每个障碍物的轨迹作为一组椭圆化。由于MBE的不确定性,参数化椭圆形的半肢和半尺寸轴被扩展以确保安全性。我们扩展了传统的控制屏障功能(CBF),并提出动态控制屏障功能(D-CBF)。我们将D-CBF与模型预测控制(MPC)结合起来,以实施安全至关重要的动态障碍。进行了模拟和实际场景中的实验,以验证我们算法的有效性。源代码发布以供社区参考。
translated by 谷歌翻译
这项工作将控制屏障功能(CBF)与全身控制器结合在一起,以使MIT类人动物自我避免。现有的反应性控制器进行自我避免,不能保证无碰撞的轨迹,因为它们不利用机器人的完整动态,从而损害了运动学的可行性。相比之下,拟议的CBF-WBC控制器可以实时理解机器人的动力学不足,以确保无碰撞运动。该方法的有效性在模拟中得到了验证。首先,一个简单的手段实验表明,CBF-WBC使机器人的手能够偏离不可行的参考轨迹,以避免自我收集。其次,CBF-WBC与设计用于动态运动的线性模型预测控制器(LMPC)结合使用,并使用CBF-WBC来跟踪LMPC预测。质心动量任务还用于产生有助于人形运动和干扰恢复的手臂运动。步行实验表明,CBF允许质心动量任务产生可行的手臂运动,并在高级规划师提供的脚步位置或摇摆轨迹时避免腿部自我收获,对于真正的机器人来说是不可行的。
translated by 谷歌翻译
Motion planning is challenging for autonomous systems in multi-obstacle environments due to nonconvex collision avoidance constraints. Directly applying numerical solvers to these nonconvex formulations fails to exploit the constraint structures, resulting in excessive computation time. In this paper, we present an accelerated collision-free motion planner, namely regularized dual alternating direction method of multipliers (RDADMM or RDA for short), for the model predictive control (MPC) based motion planning problem. The proposed RDA addresses nonconvex motion planning via solving a smooth biconvex reformulation via duality and allows the collision avoidance constraints to be computed in parallel for each obstacle to reduce computation time significantly. We validate the performance of the RDA planner through path-tracking experiments with car-like robots in simulation and real world setting. Experimental results show that the proposed methods can generate smooth collision-free trajectories with less computation time compared with other benchmarks and perform robustly in cluttered environments.
translated by 谷歌翻译
由于机器人的脚下缺乏致动,全球地位控制是一个挑战性问题。在本文中,我们应用基于混合的倒立摆(H唇)踩踏3D废除后的双模型机器人进行全球位置控制。H-Lip行走的步骤步骤(S2S)动态近似于机器人行走的实际S2S动态,其中步长被认为是输入。因此,基于H唇的反馈控制器大致控制机器人表现得像H唇,它在误差不变集中保持的差异。模型预测控制(MPC)应用于3D中的全球位置控制的H唇。然后,H唇踩踏然后产生用于跟踪机器人的所需步进尺寸。此外,转向行为与步骤规划集成。拟议的框架在与概念验证实验中的模拟中验证了在模拟中的3D欠扰动的双模型机器人Cassie。
translated by 谷歌翻译
模型预测控制(MPC)方案已经证明了它们在控制高自由度(DOF)复杂机器人系统方面的效率。但是,它们的计算成本很高,更新速度约为数十万。这种相对较慢的更新速率阻碍了这种系统稳定的触觉远程操作的可能性,因为缓慢的反馈回路可能会导致对操作员的不稳定性和透明度的丧失。这项工作为MPC控制的复杂机器人系统的透明远程操作提供了一个新颖的框架。特别是,我们采用反馈MPC方法并利用其结构来以快速速率计算运营商输入,该快速速率与MPC循环本身的更新率无关。我们在移动操纵器平台上演示了我们的框架,并表明它可以显着提高触觉远程操作的透明度和稳定性。我们还强调,所提出的反馈结构是令人满意的,并且不违反最佳控制问题中定义的任何约束。据我们所知,这项工作是使用全身MPC框架的双边操纵器的双边远程操作的首次实现。
translated by 谷歌翻译
为了实现成功的实地自主权,移动机器人需要自由适应环境的变化。视觉导航系统(如视觉教学和重复(VT&R)通常会假设参考轨迹周围的空间是自由的,但如果环境受阻,则路径跟踪可能会失败,或者机器人可以与先前看不见的障碍物碰撞。在这项工作中,我们为VT&R系统提供了一个局部反应控制器,允许机器人尽管对环境进行物理变化,但是尽管环境变化。我们的控制器使用本地高程映射来计算矢量表示,并输出10 Hz导航的Twist命令。它们组合在Riemannian运动策略(RMP)控制器中,该控制器需要<2 ms以在CPU上运行。我们将我们的控制器与VT&R系统集成在内的ANYMAL COMOT,并在室内杂乱的空间和大规模地下矿井中进行了测试。我们表明,当发生诸如靠近墙壁,交叉门口或穿越狭窄的走廊时,当发生视觉跟踪时,我们的本地反应控制器保持机器人安全。视频:https://youtu.be/g_awnec5awu.
translated by 谷歌翻译
在这封信中,我们提出了一种多功能的层次离线计划算法,以及用于敏捷四足球运动的在线控制管道。我们的离线规划师在优化降低阶模型和全身轨迹优化的质心动力学之间进行交替,以实现动力学共识。我们使用等椭圆形参数化的新型动量惰性质地优化能够通过``惯性塑造''来产生高度的杂技运动。我们的全身优化方法可显着改善基于标准DDP的方法的质量从质心层中利用反馈。对于在线控制,我们通过完整的质心动力学的线性转换开发了一种新颖的凸模型预测控制方案。我们的控制器可以在单个优化中有效地对接触力和关节加速度有效地优化,从而实现更直接的加速度,从而实现更直接的优化与现有四倍体MPC控制器相比,跟踪动量丰富的动作。我们在四个不同的动态操作中证明了我们的轨迹计划者的能力和通用性。然后,我们在MIT MINI Cheetah平台上展示了​​一个硬件实验,以证明整个计划的性能和整个计划的性能和性能扭曲的控制管道跳动。
translated by 谷歌翻译
The ability to generate dynamic walking in real-time for bipedal robots with input constraints and underactuation has the potential to enable locomotion in dynamic, complex and unstructured environments. Yet, the high-dimensional nature of bipedal robots has limited the use of full-order rigid body dynamics to gaits which are synthesized offline and then tracked online. In this work we develop an online nonlinear model predictive control approach that leverages the full-order dynamics to realize diverse walking behaviors. Additionally, this approach can be coupled with gaits synthesized offline via a desired reference to enable a shorter prediction horizon and rapid online re-planning, bridging the gap between online reactive control and offline gait planning. We demonstrate the proposed method, both with and without an offline gait, on the planar robot AMBER-3M in simulation and on hardware.
translated by 谷歌翻译
由于机器人动力学中的固有非线性,腿部机器人全身动作的在线计划具有挑战性。在这项工作中,我们提出了一个非线性MPC框架,该框架可以通过有效利用机器人动力学结构来在线生成全身轨迹。Biconmp用于在真正的四倍机器人上生成各种环状步态,其性能在不同的地形上进行了评估,对抗不同步态之间的不可预见的推动力并在线过渡。此外,提出了双孔在机器人上产生非平凡无环的全身动态运动的能力。同样的方法也被用来在人体机器人(TALOS)上产生MPC的各种动态运动,并在模拟中产生另一个四倍的机器人(Anymal)。最后,报告并讨论了对计划范围和频率对非线性MPC框架的影响的广泛经验分析。
translated by 谷歌翻译
导航动态环境要求机器人生成无碰撞的轨迹,并积极避免移动障碍。大多数以前的作品都基于一个单个地图表示形式(例如几何,占用率或ESDF地图)设计路径计划算法。尽管他们在静态环境中表现出成功,但由于地图表示的限制,这些方法无法同时可靠地处理静态和动态障碍。为了解决该问题,本文提出了一种利用机器人在板载视觉的基于梯度的B-Spline轨迹优化算法。深度视觉使机器人能够基于体素图以几何形式跟踪和表示动态对象。拟议的优化首先采用基于圆的指南算法,以近似避免静态障碍的成本和梯度。然后,使用视觉检测的移动对象,我们的后水平距离场同时用于防止动态碰撞。最后,采用迭代重新指导策略来生成无碰撞轨迹。仿真和物理实验证明,我们的方法可以实时运行以安全地导航动态环境。
translated by 谷歌翻译
使用逆动力学的最佳控制(OC)提供了数值益处,例如粗略优化,更便宜的衍生物计算和高收敛速率。但是,为了利用腿部机器人的模型预测控制(MPC)中的这些好处,有效处理其大量平等约束至关重要。为此,我们首先(i)提出了一种新的方法来处理基于NullSpace参数化的平等约束。我们的方法可以适当地平衡最优性,以及动态和平等构成可行性,从而增加了吸引到良好本地最小值的盆地。为此,我们(ii)(ii)通过合并功能功能来调整以可行性为导向的搜索。此外,我们介绍了(iii)的(iii)对考虑任意执行器模型的反向动力学的凝结公式。我们还基于感知运动框架中基于反向动力学的新型MPC(iv)。最后,我们提出(v)最佳控制与正向动力学和逆动力学的理论比较,并通过数值评估。我们的方法使逆动力学MPC在硬件上首次应用,从而在Anymal机器人上进行了最新的动态攀登。我们在广泛的机器人问题上进行基准测试,并产生敏捷和复杂的动作。我们显示了我们的无空间分辨率和凝结配方的计算降低(高达47.3%)。我们通过以高收敛速率解决粗略优化问题(最多10 Hz离散化)来提供方法的益处。我们的算法在Crocoddyl内公开可用。
translated by 谷歌翻译
随着腿部机器人和嵌入式计算都变得越来越有能力,研究人员已经开始专注于这些机器人的现场部署。在非结构化环境中的强大自治需要对机器人周围的世界感知,以避免危害。但是,由于处理机车动力学所需的复杂规划人员和控制器,因此在网上合并在线的同时在线保持敏捷运动对腿部机器人更具挑战性。该报告将比较三种最新的感知运动方法,并讨论可以使用视觉来实现腿部自主权的不同方式。
translated by 谷歌翻译
在腿部机器人的机车上,执行高度敏捷的动态动作,例如跳跃或跑步的踏板乐队,这仍然是一个挑战性的问题。本文提出了一个框架,该框架结合了轨迹优化和模型预测控制,以在踏脚石上执行强大的连续跳跃。在我们的方法中,我们首先利用基于机器人的全非线性动力学的轨迹优化来生成各种跳跃距离的周期性跳跃轨迹。然后,基于模型预测控制的跳跃控制器设计用于实现平滑的跳跃过渡,从而使机器人能够在步进石上实现连续跳跃。得益于将MPC作为实时反馈控制器的合并,该提议的框架也得到了验证,可以对机器人动力学上的高度扰动和模型不确定性具有不均匀的平台。
translated by 谷歌翻译
室内运动计划的重点是解决通过混乱环境导航代理的问题。迄今为止,在该领域已经完成了很多工作,但是这些方法通常无法找到计算廉价的在线路径计划和路径最佳之间的最佳平衡。除此之外,这些作品通常证明是单一启动单目标世界的最佳性。为了应对这些挑战,我们为在未知室内环境中进行导航的多个路径路径计划者和控制器堆栈,在该环境中,路点将目标与机器人必须在达到目标之前必须穿越的中介点一起。我们的方法利用全球规划师(在任何瞬间找到下一个最佳航路点),本地规划师(计划通往特定航路点的路径)以及自适应模型预测性控制策略(用于强大的系统控制和更快的操作) 。我们在一组随机生成的障碍图,中间航路点和起始目标对上评估了算法,结果表明计算成本显着降低,具有高度准确性和可靠的控制。
translated by 谷歌翻译