分层多粒度分类(HMC)将分层多粒度标签分配给每个对象,专注于对标签层次结构进行编码,例如[“Albatross”,“Laysan Albatross”]从粗略级别进行。然而,细粒度的定义是主观的,并且图像质量可能会影响识别。因此,可以在层次结构的任何水平处观察样本,例如,例如,[“信天翁”]或[“白金贸易”,“Laysan Albatross”,并且在致动类别中辨别的示例在HMC的传统设置中通常被忽略。在本文中,我们研究了HMC问题,其中对象在层次结构的任何级别上标记。所提出的方法的基本设计源自两个动机:(1)学习在各个级别标记的物体应该转移级别之间的分层知识; (2)较低级别的类应继承与上级超类相关的属性。所提出的组合损失通过从树层次结构中定义的相关标签聚合信息来最大化观察到的地面真实标签的边际概率。如果观察到的标签处于叶片水平,则组合损失进一步施加了多级跨熵损失,以增加细粒度分类损失的重量。考虑到分层特征交互,我们提出了一个分层剩余网络(HRN),其中来自父级的粒度特定特征作为残留连接的特定特征被添加到儿童级别的特征。与最先进的HMC方法和精细的视觉分类(FGVC)方法相比,三种常用数据集的实验证明了我们的方法的有效性和利用标签层次结构的方法。
translated by 谷歌翻译
分层分类旨在将对象对类别的层次进行。例如,可以根据订单,家庭和物种的三级层次分类来分类鸟类。现有方法通过将其解耦为几个多级分类任务来常见地解决分层分类。但是,这种多任务学习策略未能充分利用不同层次结构的各种类别之间的相关性。在本文中,我们提出了基于深度学习的统一概率框架的标签层次转换,以解决层次分类。具体地,我们明确地学习标签层次转换矩阵,其列向量表示两个相邻层次结构之间的类的条件标签分布,并且可以能够编码嵌入类层次结构中的相关性。我们进一步提出了混淆损失,这鼓励分类网络在训练期间学习不同标签层次结构的相关性。所提出的框架可以适用于任何现有的深网络,只有轻微的修改。我们尝试具有各种层次结构的三个公共基准数据集,结果证明了我们的方法超出现有技术的优势。源代码将公开可用。
translated by 谷歌翻译
标签层次结构通常作为生物分类法或语言数据集的一部分可用。几项作品利用这些作品来学习层次结构意识到功能,以改善分类器,以在维持或减少总体错误的同时犯有语义有意义的错误。在本文中,我们提出了一种学习层次结构意识特征(HAF)的新方法,该方法利用分类器在每个层次结构级别上的分类器受到约束,以生成与标签层次结构一致的预测。分类器的训练是通过最大程度地减少从细粒分类器获​​得的目标软标签的Jensen Shannon差异来训练。此外,我们采用了简单的几何损失,该损失限制了特征空间几何形状以捕获标签空间的语义结构。 HAF是一种训练时间方法,可以改善错误,同时保持TOP-1错误,从而解决了跨凝性损失的问题,该问题将所有错误视为平等。我们在三个层次数据集上评估HAF,并在Inaturalist-19和Cifar-100数据集上实现最新结果。源代码可从https://github.com/07agarg/haf获得
translated by 谷歌翻译
弱监督的对象本地化(WSOL)旨在学习仅使用图像级类别标签编码对象位置的表示形式。但是,许多物体可以在不同水平的粒度标记。它是动物,鸟还是大角的猫头鹰?我们应该使用哪些图像级标签?在本文中,我们研究了标签粒度在WSOL中的作用。为了促进这项调查,我们引入了Inatloc500,这是一个新的用于WSOL的大规模细粒基准数据集。令人惊讶的是,我们发现选择正确的训练标签粒度比选择最佳的WSOL算法提供了更大的性能。我们还表明,更改标签粒度可以显着提高数据效率。
translated by 谷歌翻译
当然,细粒度的识别,例如车辆识别或鸟类分类,具有特定的分层标签,其中精细类别总是难以分类而不是粗作品。然而,最近的大多数基于深度学习的方法都忽略了细粒物体的语义结构,并且不利用传统的细粒度识别技术(例如,粗致细的分类)。在本文中,我们提出了一种具有双分支网络(粗分支和细枝)的新颖框架,即语义双线性汇集,用于使用分级标签树进行细粒度识别。该框架可以自适应地从层级中学习语义信息。具体而言,我们设计了通过考虑相邻水平与不同粗级别的样本之间的距离来完全利用语义前导者来充分利用语义前导者的训练的广义交叉熵损失。此外,我们的方法在测试时仅利用细分分支,以便在测试时间内增加开销。实验结果表明,我们的提出方法在四个公共数据集上实现了最先进的性能。
translated by 谷歌翻译
The previous fine-grained datasets mainly focus on classification and are often captured in a controlled setup, with the camera focusing on the objects. We introduce the first Fine-Grained Vehicle Detection (FGVD) dataset in the wild, captured from a moving camera mounted on a car. It contains 5502 scene images with 210 unique fine-grained labels of multiple vehicle types organized in a three-level hierarchy. While previous classification datasets also include makes for different kinds of cars, the FGVD dataset introduces new class labels for categorizing two-wheelers, autorickshaws, and trucks. The FGVD dataset is challenging as it has vehicles in complex traffic scenarios with intra-class and inter-class variations in types, scale, pose, occlusion, and lighting conditions. The current object detectors like yolov5 and faster RCNN perform poorly on our dataset due to a lack of hierarchical modeling. Along with providing baseline results for existing object detectors on FGVD Dataset, we also present the results of a combination of an existing detector and the recent Hierarchical Residual Network (HRN) classifier for the FGVD task. Finally, we show that FGVD vehicle images are the most challenging to classify among the fine-grained datasets.
translated by 谷歌翻译
本文考虑了层次多标签分类(HMC)的问题,其中(i)每个示例都可以存在几个标签,并且(ii)标签通过特定于域的层次结构相关。在直觉的指导下,所有错误都不相等,我们提出了全面的层次结构意识到多标签预测(Champ),该框架会根据其严重性根据层次结构树惩罚错误预测。据我们所知,有一些作品将这种想法应用于单标签分类,但对于多标签分类,有限的作品侧重于错误的严重性。关键原因是没有明确的方法可以在多标签设置中量化错误预测的严重性。在这项工作中,我们提出了一个简单但有效的指标,以量化HMC中错误的严重性,自然会导致冠军。在跨模态六个公共HMC数据集(图像,音频和文本)上进行的广泛实验表明,纳入层次信息会带来可观的增长,因为Champ提高了AUPRC(2.6%的中位数改善)和层次指标(2.85%的中位数提高百分比)(超过2.85%)独立分层或多标签分类方法。与标准的多标记基线相比,Champ在鲁棒性(平均提高百分比8.87%)和数据制度更少的稳健性(8.87%)方面提供了改进的AUPRC。此外,我们的方法提供了一个框架来增强具有更好错误的现有多标签分类算法(平均百分比增量为18.1%)。
translated by 谷歌翻译
可以通过对手动预定义目标的监督(例如,一hot或Hadamard代码)进行深入的表示学习来解决细粒度的视觉分类。这种目标编码方案对于模型间相关性的灵活性较小,并且对稀疏和不平衡的数据分布也很敏感。鉴于此,本文介绍了一种新颖的目标编码方案 - 动态目标关系图(DTRG),作为辅助特征正则化,是一个自生成的结构输出,可根据输入图像映射。具体而言,类级特征中心的在线计算旨在在表示空间中生成跨类别距离,因此可以通过非参数方式通过动态图来描绘。明确最大程度地减少锚定在这些级别中心的阶层内特征变化可以鼓励学习判别特征。此外,由于利用了类间的依赖性,提出的目标图可以减轻代表学习中的数据稀疏性和不稳定。受混合风格数据增强的最新成功的启发,本文将随机性引入了动态目标关系图的软结构,以进一步探索目标类别的关系多样性。实验结果可以证明我们方法对多个视觉分类任务的许多不同基准的有效性,尤其是在流行的细粒对象基准上实现最先进的性能以及针对稀疏和不平衡数据的出色鲁棒性。源代码可在https://github.com/akonlau/dtrg上公开提供。
translated by 谷歌翻译
细粒度的图像识别是具有挑战性的,因为鉴别性线索通常是碎片化的,无论是来自单个图像还是多个图像。尽管有重要的改进,但大多数现有方法仍然专注于从单个图像中的最辨别部分,忽略其他地区的信息细节,缺乏从其他相关图像的线索考虑。在本文中,我们从新的角度分析了微粒图像识别的困难,并提出了一种具有峰值抑制模块和知识引导模块的变压器架构,其尊重单个图像中辨别特征的多样化和鉴别线索的聚合在多个图像中。具体地,峰值抑制模块首先利用线性投影来将输入图像转换为顺序令牌。然后,它基于变压器编码器产生的注意响应来阻止令牌。该模块因特征学习过程中的最辨别部分而受到惩罚,因此,提高了忽视区域的信息利用。知识引导模块将从峰值抑制模块生成的基于图像的表示与被学习的知识嵌入集进行比较,以获得知识响应系数。之后,使用响应系数作为分类分数,将知识学习形式形式化为分类问题。在训练期间更新知识嵌入和基于图像的表示,以便知识嵌入包括不同图像的鉴别线索。最后,我们将所获得的知识嵌入纳入基于形象的表示,作为全面的表示,导致性能显着提高。对六个流行数据集的广泛评估证明了所提出的方法的优势。
translated by 谷歌翻译
Network traffic classification is the basis of many network security applications and has attracted enough attention in the field of cyberspace security. Existing network traffic classification based on convolutional neural networks (CNNs) often emphasizes local patterns of traffic data while ignoring global information associations. In this paper, we propose a MLP-Mixer based multi-view multi-label neural network for network traffic classification. Compared with the existing CNN-based methods, our method adopts the MLP-Mixer structure, which is more in line with the structure of the packet than the conventional convolution operation. In our method, the packet is divided into the packet header and the packet body, together with the flow features of the packet as input from different views. We utilize a multi-label setting to learn different scenarios simultaneously to improve the classification performance by exploiting the correlations between different scenarios. Taking advantage of the above characteristics, we propose an end-to-end network traffic classification method. We conduct experiments on three public datasets, and the experimental results show that our method can achieve superior performance.
translated by 谷歌翻译
神经网络(NNS)和决策树(DTS)都是机器学习的流行模型,但具有相互排斥的优势和局限性。为了带来两个世界中的最好,提出了各种方法来明确或隐式地集成NN和DTS。在这项调查中,这些方法是在我们称为神经树(NTS)的学校中组织的。这项调查旨在对NTS进行全面审查,并尝试确定它们如何增强模型的解释性。我们首先提出了NTS的彻底分类学,该分类法表达了NNS和DTS的逐步整合和共同进化。之后,我们根据NTS的解释性和绩效分析,并建议解决其余挑战的可能解决方案。最后,这项调查以讨论有条件计算和向该领域的有希望的方向进行讨论结束。该调查中审查的论文列表及其相应的代码可在以下网址获得:https://github.com/zju-vipa/awesome-neural-trees
translated by 谷歌翻译
Fine-grained visual recognition is to classify objects with visually similar appearances into subcategories, which has made great progress with the development of deep CNNs. However, handling subtle differences between different subcategories still remains a challenge. In this paper, we propose to solve this issue in one unified framework from two aspects, i.e., constructing feature-level interrelationships, and capturing part-level discriminative features. This framework, namely PArt-guided Relational Transformers (PART), is proposed to learn the discriminative part features with an automatic part discovery module, and to explore the intrinsic correlations with a feature transformation module by adapting the Transformer models from the field of natural language processing. The part discovery module efficiently discovers the discriminative regions which are highly-corresponded to the gradient descent procedure. Then the second feature transformation module builds correlations within the global embedding and multiple part embedding, enhancing spatial interactions among semantic pixels. Moreover, our proposed approach does not rely on additional part branches in the inference time and reaches state-of-the-art performance on 3 widely-used fine-grained object recognition benchmarks. Experimental results and explainable visualizations demonstrate the effectiveness of our proposed approach. The code can be found at https://github.com/iCVTEAM/PART.
translated by 谷歌翻译
细粒度视觉识别的挑战通常在于发现关键的歧视区域。虽然可以从大规模标记的数据集中自动识别此类区域,但是当仅提供少量注释时,类似的方法可能会降低效率。在低数据制度中,网络通常很难选择正确的区域以识别识别,并且倾向于从培训数据中过度拟合虚假的相关模式。为了解决这个问题,本文提出了一种自我提升的注意机制,这是一种新颖的方法,可以使网络正规化关注跨样本和类共享的关键区域。具体而言,提出的方法首先为每个训练图像生成一个注意图,突出显示用于识别地面真实对象类别的判别零件。然后将生成的注意图用作伪通量。该网络被执行以适合它们作为辅助任务。我们将这种方法称为自我增强注意机制(SAM)。我们还通过使用SAM创建多个注意地图来开发一个变体,以泳池卷积图的样式,以双线性合并,称为SAM双线性。通过广泛的实验研究,我们表明两种方法都可以显着提高低数据状态上的细粒度视觉识别性能,并可以纳入现有的网络体系结构中。源代码可公开可用:https://github.com/ganperf/sam
translated by 谷歌翻译
即使面对分布(OOD)样本,也必须信任机器学习方法在现实世界环境中做出适当的决定。当前的许多方法只是旨在检测OOD示例并在给出未识别的输入时提醒用户。但是,当OOD样本与训练数据显着重叠时,二进制异常检测是无法解释或解释的,并且很少向用户提供信息。我们提出了一个新的OOD检测模型,随着输入变得更加模棱两可,在不同水平的粒度水平上进行预测,模型预测变得更加粗糙,更保守。考虑一个遇到未知鸟类和汽车的动物分类器。两种情况都是OOD,但是如果分类器认识到其对特定物种的不确定性太大并预测鸟类而不是将其视为OOD,则用户获得了更多信息。此外,我们在层次结构的每个级别上诊断了分类器的性能,以改善模型预测的解释性和解释性。我们证明了分层分类器对细粒和粗粒的OOD任务的有效性。
translated by 谷歌翻译
深度学习模型在逐步学习新任务时遭受灾难性遗忘。已经提出了增量学习,以保留旧课程的知识,同时学习识别新课程。一种典型的方法是使用一些示例来避免忘记旧知识。在这种情况下,旧类和新课之间的数据失衡是导致模型性能下降的关键问题。由于数据不平衡,已经设计了几种策略来纠正新类别的偏见。但是,他们在很大程度上依赖于新旧阶层之间偏见关系的假设。因此,它们不适合复杂的现实世界应用。在这项研究中,我们提出了一种假设不足的方法,即多粒性重新平衡(MGRB),以解决此问题。重新平衡方法用于减轻数据不平衡的影响;但是,我们从经验上发现,他们将拟合新的课程。为此,我们进一步设计了一个新颖的多晶正式化项,该项使模型还可以考虑除了重新平衡数据之外的类别的相关性。类层次结构首先是通过将语义或视觉上类似类分组来构建的。然后,多粒性正则化将单热标签向量转换为连续的标签分布,这反映了基于构造的类层次结构的目标类别和其他类之间的关系。因此,该模型可以学习类间的关系信息,这有助于增强新旧课程的学习。公共数据集和现实世界中的故障诊断数据集的实验结果验证了所提出的方法的有效性。
translated by 谷歌翻译
细粒度的图像分析(FGIA)是计算机视觉和模式识别中的长期和基本问题,并为一组多种现实世界应用提供了基础。 FGIA的任务是从属类别分析视觉物体,例如汽车或汽车型号的种类。细粒度分析中固有的小阶级和阶级阶级内变异使其成为一个具有挑战性的问题。利用深度学习的进步,近年来,我们在深入学习动力的FGIA中见证了显着进展。在本文中,我们对这些进展的系统进行了系统的调查,我们试图通过巩固两个基本的细粒度研究领域 - 细粒度的图像识别和细粒度的图像检索来重新定义和扩大FGIA领域。此外,我们还审查了FGIA的其他关键问题,例如公开可用的基准数据集和相关域的特定于应用程序。我们通过突出几个研究方向和开放问题,从社区中突出了几个研究方向和开放问题。
translated by 谷歌翻译
我们提出了将粗大分类标签纳入细粒域中的图像分类器的技术。这种标签通常可以通过较小的努力来获得较小的粒状域,例如根据生物分类法组织类别的自然界。在三个王国组成的半inat数据集上,包括Phylum标签,在使用ImageNet预训练模型的转移学习设置中将物种级别分类精度提高了6%。使用称为FixMatch的最先进的半监督学习算法的分层标签结构提高了1.3%的性能。当提供诸如类或订单的详细标签或从头开始培训时,相对收益更大。但是,我们发现大多数方法对来自新类别的域名数据的存在并不强大。我们提出了一种技术来从层次结构引导的大量未标记图像中选择相关数据,这提高了鲁棒性。总体而言,我们的实验表明,具有粗大分类标签的半监督学习对于细粒度域中的培训分类器是实用的。
translated by 谷歌翻译
传统的细颗粒图像分类通常依赖于带注释的地面真相的大规模训练样本。但是,某些子类别在实际应用中可能几乎没有可用的样本。在本文中,我们建议使用多频邻域(MFN)和双交叉调制(DCM)提出一个新颖的几弹性细颗粒图像分类网络(FICNET)。采用模块MFN来捕获空间域和频域中的信息。然后,提取自相似性和多频成分以产生多频结构表示。 DCM使用分别考虑全球环境信息和类别之间的微妙关系来调节嵌入过程。针对两个少量任务的三个细粒基准数据集进行的综合实验验证了FICNET与最先进的方法相比具有出色的性能。特别是,在两个数据集“ Caltech-UCSD鸟”和“ Stanford Cars”上进行的实验分别可以获得分类精度93.17 \%和95.36 \%。它们甚至高于一般的细粒图像分类方法可以实现的。
translated by 谷歌翻译
很少有细粒度的分类和人搜索作为独特的任务和文学作品,已经分别对待了它们。但是,仔细观察揭示了重要的相似之处:这两个任务的目标类别只能由特定的对象细节歧视;相关模型应概括为新类别,而在培训期间看不到。我们提出了一个适用于这两个任务的新型统一查询引导网络(QGN)。QGN由一个查询引导的暹罗引文和兴奋子网组成,该子网还重新进行了所有网络层的查询和画廊功能,一个查询实习的区域建议特定于特定于特定的本地化以及查询指导的相似性子网络子网本网络用于公制学习。QGN在最近的一些少数细颗粒数据集上有所改善,在幼崽上的其他技术优于大幅度。QGN还对人搜索Cuhk-Sysu和PRW数据集进行了竞争性执行,我们在其中进行了深入的分析。
translated by 谷歌翻译
在本文中,我们主要关注如何通过借口任务(例如旋转或颜色置换等)学习其他特征表示形式的其他特征表示形式。借口任务产生的这种附加知识可以进一步提高几次学习(FSL)的性能,因为它与人类通知的监督(即FSL任务的类标签)有所不同。为了解决此问题,我们提出了插入式层次树结构感知(HTS)方法,该方法不仅了解FSL和借口任务的关系,而且更重要的是,可以自适应地选择和汇总由借口任务生成的特征表示,以最大化FSL任务的性能。引入了层次树构造组件和封闭式选择汇总组件来构建树结构并找到更丰富的可转移知识,这些知识可以迅速适应具有一些标记的图像的新颖类。广泛的实验表明,我们的HTS可以显着增强多种几次方法,以在四个基准数据集上实现新的最新性能。该代码可在以下网址获得:https://github.com/remimz/hts-eccv22。
translated by 谷歌翻译