标签层次结构通常作为生物分类法或语言数据集的一部分可用。几项作品利用这些作品来学习层次结构意识到功能,以改善分类器,以在维持或减少总体错误的同时犯有语义有意义的错误。在本文中,我们提出了一种学习层次结构意识特征(HAF)的新方法,该方法利用分类器在每个层次结构级别上的分类器受到约束,以生成与标签层次结构一致的预测。分类器的训练是通过最大程度地减少从细粒分类器获​​得的目标软标签的Jensen Shannon差异来训练。此外,我们采用了简单的几何损失,该损失限制了特征空间几何形状以捕获标签空间的语义结构。 HAF是一种训练时间方法,可以改善错误,同时保持TOP-1错误,从而解决了跨凝性损失的问题,该问题将所有错误视为平等。我们在三个层次数据集上评估HAF,并在Inaturalist-19和Cifar-100数据集上实现最新结果。源代码可从https://github.com/07agarg/haf获得
translated by 谷歌翻译
半监督学习方法已成为对打击获得大量注释数据的挑战的活跃研究领域。为了提高半监督学习方法表现的目标,我们提出了一种新颖的框架,Hiematch,一种半监督方法,利用分层信息来降低标签成本并表现以及vanilla半监督学习方法。分层信息通常是具有细粒标签的粗标签(例如,啄木鸟)的粗标签(例如,啄木鸟)的现有知识(例如,柔软的啄木鸟或金朝啄木鸟)。但是,尚未探讨使用使用粗类标签来改进半监督技术的监督。在没有细粒度的标签的情况下,Himatch利用标签层次结构,并使用粗级标签作为弱监控信号。此外,Himatch是一种改进任何半熟的学习框架的通用方法,我们使用我们的结果在最近的最先进的技术Mixmatch和Fixmatch上展示了这一点。我们评估了在两个基准数据集,即CiFar-100和Nabirds上的Himatch疗效。与MixMatch相比,HOMACHACT可以在CIFAR-100上减少50%的粒度标签50%的用量,仅在前1个精度的边缘下降0.59%。代码:https://github.com/07agarg/hiermatch.
translated by 谷歌翻译
分层分类旨在将对象对类别的层次进行。例如,可以根据订单,家庭和物种的三级层次分类来分类鸟类。现有方法通过将其解耦为几个多级分类任务来常见地解决分层分类。但是,这种多任务学习策略未能充分利用不同层次结构的各种类别之间的相关性。在本文中,我们提出了基于深度学习的统一概率框架的标签层次转换,以解决层次分类。具体地,我们明确地学习标签层次转换矩阵,其列向量表示两个相邻层次结构之间的类的条件标签分布,并且可以能够编码嵌入类层次结构中的相关性。我们进一步提出了混淆损失,这鼓励分类网络在训练期间学习不同标签层次结构的相关性。所提出的框架可以适用于任何现有的深网络,只有轻微的修改。我们尝试具有各种层次结构的三个公共基准数据集,结果证明了我们的方法超出现有技术的优势。源代码将公开可用。
translated by 谷歌翻译
分层多粒度分类(HMC)将分层多粒度标签分配给每个对象,专注于对标签层次结构进行编码,例如[“Albatross”,“Laysan Albatross”]从粗略级别进行。然而,细粒度的定义是主观的,并且图像质量可能会影响识别。因此,可以在层次结构的任何水平处观察样本,例如,例如,[“信天翁”]或[“白金贸易”,“Laysan Albatross”,并且在致动类别中辨别的示例在HMC的传统设置中通常被忽略。在本文中,我们研究了HMC问题,其中对象在层次结构的任何级别上标记。所提出的方法的基本设计源自两个动机:(1)学习在各个级别标记的物体应该转移级别之间的分层知识; (2)较低级别的类应继承与上级超类相关的属性。所提出的组合损失通过从树层次结构中定义的相关标签聚合信息来最大化观察到的地面真实标签的边际概率。如果观察到的标签处于叶片水平,则组合损失进一步施加了多级跨熵损失,以增加细粒度分类损失的重量。考虑到分层特征交互,我们提出了一个分层剩余网络(HRN),其中来自父级的粒度特定特征作为残留连接的特定特征被添加到儿童级别的特征。与最先进的HMC方法和精细的视觉分类(FGVC)方法相比,三种常用数据集的实验证明了我们的方法的有效性和利用标签层次结构的方法。
translated by 谷歌翻译
在许多分类任务中,可以将一组目标类组织成层次结构。该结构引起类之间的语义距离,并且可以在成本矩阵的形式下汇总,其定义了类集上的有限度量。在本文中,我们建议通过将该度量集成在原型网络的监控中来模拟分层类结构。我们的方法依赖于共同学习特征提取网络和一组类原型,其相对布置在嵌入空间中的相对布置遵循分层度量。我们表明,与传统方法和其他基于原型的策略相比,该方法允许在成本矩阵加权的误差率的一致性提高。此外,当诱导的指标包含对数据结构的洞察力时,我们的方法也提高了整体精度。四种不同公共数据集的实验 - 从农业时间序列分类到深度映像语义分割 - 验证我们的方法。
translated by 谷歌翻译
即使面对分布(OOD)样本,也必须信任机器学习方法在现实世界环境中做出适当的决定。当前的许多方法只是旨在检测OOD示例并在给出未识别的输入时提醒用户。但是,当OOD样本与训练数据显着重叠时,二进制异常检测是无法解释或解释的,并且很少向用户提供信息。我们提出了一个新的OOD检测模型,随着输入变得更加模棱两可,在不同水平的粒度水平上进行预测,模型预测变得更加粗糙,更保守。考虑一个遇到未知鸟类和汽车的动物分类器。两种情况都是OOD,但是如果分类器认识到其对特定物种的不确定性太大并预测鸟类而不是将其视为OOD,则用户获得了更多信息。此外,我们在层次结构的每个级别上诊断了分类器的性能,以改善模型预测的解释性和解释性。我们证明了分层分类器对细粒和粗粒的OOD任务的有效性。
translated by 谷歌翻译
深度学习模型在逐步学习新任务时遭受灾难性遗忘。已经提出了增量学习,以保留旧课程的知识,同时学习识别新课程。一种典型的方法是使用一些示例来避免忘记旧知识。在这种情况下,旧类和新课之间的数据失衡是导致模型性能下降的关键问题。由于数据不平衡,已经设计了几种策略来纠正新类别的偏见。但是,他们在很大程度上依赖于新旧阶层之间偏见关系的假设。因此,它们不适合复杂的现实世界应用。在这项研究中,我们提出了一种假设不足的方法,即多粒性重新平衡(MGRB),以解决此问题。重新平衡方法用于减轻数据不平衡的影响;但是,我们从经验上发现,他们将拟合新的课程。为此,我们进一步设计了一个新颖的多晶正式化项,该项使模型还可以考虑除了重新平衡数据之外的类别的相关性。类层次结构首先是通过将语义或视觉上类似类分组来构建的。然后,多粒性正则化将单热标签向量转换为连续的标签分布,这反映了基于构造的类层次结构的目标类别和其他类之间的关系。因此,该模型可以学习类间的关系信息,这有助于增强新旧课程的学习。公共数据集和现实世界中的故障诊断数据集的实验结果验证了所提出的方法的有效性。
translated by 谷歌翻译
在图像分类任务中,深度神经网络通常是脆弱的,并且已知错误分类输入。虽然这些错误分类可能是不可避免的,但不能认为所有失败模式都是平等的。某些错误分类(例如,将狗的图像分类为飞机)可以困扰人类并导致系统中的人类信任丢失。更糟糕的是,这些错误(例如,被错误分类为灵长类动物的人)可以具有可憎的社会影响。因此,在这项工作中,我们的目标是降低差不可估量的错误。为了解决这一挑战,我们首先讨论获取捕获人类期望($ M ^ H $)的类级语义的方法,这是关于哪些类的语义关闭{\ EM与}。我们表明,对于流行的图像基准(如CiFar-10,CiFar-100,Imagenet),可以通过利用人类主题研究或公开的人类策划知识库来容易地获得类级语义。其次,我们建议使用加权损失函数(WLF)以惩罚其无法解释的错误分类。最后,我们表明培训(或微调)现有分类器具有所提出的方法,导致具有(1)的深度神经网络,具有相当的前1个精度,(2)在分销和外部的更具可扩展的故障模式 - 与现有工程相比,分布(ood)测试数据,(3)额外的人类标签的收集成本明显较低。
translated by 谷歌翻译
在过去十年中,深度神经网络已经证明是擅长图像分类任务,通常在准确性方面超越人类。然而,标准神经网络通常无法理解不同类别的分层结构的概念和相关的视觉相关任务。另一方面,人类似乎在概念上学习类别,从理解高级概念下降到粒度的类别。由于神经网络无法编码其学习结构中的这种依赖性而产生的一个问题是亚泊素班次 - 其中包含从训练集类别的移位群体中获取的新型看不见的课程。由于神经网络将每个类视为独立于所有其他课程,因此它努力对依赖于等级较高的依赖的转移群体进行分类。在这项工作中,我们通过新颖的条件监督培训框架的镜头研究上述问题。我们通过结构化的学习过程来解决亚泊位偏移,通过标签将分层信息包含在一起。此外,我们介绍了图形距离的概念,以模拟错误预测的灾难性影响。我们展示了这种结构化的分层方式的学习导致对亚泊素换档更加稳健的网络,在准确度和大约8.5±8.5°的图形距离上的标准换档基准上的标准模型的速度约为8.5%。
translated by 谷歌翻译
Image Classification中的无监督域适应(UDA)仍然是一个很大的挑战。在现有的UDA图像数据集中,通常以扁平的方式组织类,其中可以训练普通分类器。然而在某些情况下,平面类来自一些基本类。例如,Buggies属于类鸟。我们定义类别的分类任务,其中类具有上述特征,并且平面类和基类被分级地组织为分层图像分类。直观地,利用这种分层结构将受益分层图像分类,例如,两个容易混淆的类可以属于完全不同的基类。在本文中,我们通过从标签层次结构中学到的融合功能来改善分类的性能。具体而言,我们训练由分层标签和UDA技术监督的特征提取器,它将输出输入图像的多个功能。随后将该特征连接以预测最优质的粒度。本研究与名为Lego-15的新数据集进行。由乐高砖的合成图像和真实图像组成,乐高 - 15数据集包含15级砖块。每个类源自粗级标签和中级标签。例如,类别“85080”与砖(粗略)和砖(中间)相关联。在此数据集中,我们证明我们的方法在分层图像分类中对UDA的基线进行了一致的改进。广泛的消融和变体研究提供了进入新数据集的见解和研究算法。
translated by 谷歌翻译
本文考虑了层次多标签分类(HMC)的问题,其中(i)每个示例都可以存在几个标签,并且(ii)标签通过特定于域的层次结构相关。在直觉的指导下,所有错误都不相等,我们提出了全面的层次结构意识到多标签预测(Champ),该框架会根据其严重性根据层次结构树惩罚错误预测。据我们所知,有一些作品将这种想法应用于单标签分类,但对于多标签分类,有限的作品侧重于错误的严重性。关键原因是没有明确的方法可以在多标签设置中量化错误预测的严重性。在这项工作中,我们提出了一个简单但有效的指标,以量化HMC中错误的严重性,自然会导致冠军。在跨模态六个公共HMC数据集(图像,音频和文本)上进行的广泛实验表明,纳入层次信息会带来可观的增长,因为Champ提高了AUPRC(2.6%的中位数改善)和层次指标(2.85%的中位数提高百分比)(超过2.85%)独立分层或多标签分类方法。与标准的多标记基线相比,Champ在鲁棒性(平均提高百分比8.87%)和数据制度更少的稳健性(8.87%)方面提供了改进的AUPRC。此外,我们的方法提供了一个框架来增强具有更好错误的现有多标签分类算法(平均百分比增量为18.1%)。
translated by 谷歌翻译
我们提出了一个统一的查看,即通过通用表示,一个深层神经网络共同学习多个视觉任务和视觉域。同时学习多个问题涉及最大程度地减少具有不同幅度和特征的多个损失函数的加权总和,从而导致一个损失的不平衡状态,与学习每个问题的单独模型相比,一个损失的不平衡状态主导了优化和差的结果。为此,我们提出了通过小容量适配器将多个任务/特定于域网络的知识提炼到单个深神经网络中的知识。我们严格地表明,通用表示在学习NYU-V2和CityScapes中多个密集的预测问题方面实现了最新的表现,来自视觉Decathlon数据集中的不同域中的多个图像分类问题以及MetadataSet中的跨域中的几个域中学习。最后,我们还通过消融和定性研究进行多次分析。
translated by 谷歌翻译
实用的现实世界数据集具有丰富的类别,为无监督的领域适应带来了新的挑战,例如小型阶层歧视性,仅依靠域不变性的现有方法不能很好地处理。在这项工作中,我们提出了MEMSAC,该MEMSAC利用了跨源和目标域的样本级别相似性​​,以实现判别性转移,以​​及扩展到大量类别的体系结构。为此,我们首先引入一种内存增强方法,以在标记的源和未标记的目标域实例之间有效提取成对的相似性关系,该实例适用于处理任意数量的类。接下来,我们建议和理论上证明对比损失的新型变体,以促进阶层内跨域样本之间的局部一致性,同时在类别之间执行分离,从而保留从源到目标的歧视性转移。我们验证了MEMSAC的优势,比以前的最先进的最先进的转移任务有了显着改进。我们还提供了深入的分析和对MEMSAC有效性的见解。
translated by 谷歌翻译
双曲线空间已成为从树状结构和文本到图表的各种数据类型的歧管的流行选择。建立在欧几里德和超球空间的型原型的深度学习成功,最近的一些作品已经提出了用于分类的双曲线原型。这种方法能够在低维输出空间中实现有效的学习,并且可以利用类之间的分层关系,但需要有关类标签的特权信息来定位双曲型原型。在这项工作中,我们提出了双曲线的Busemann学习。我们的方法背后的主要思想是将原型定位在Poincar \ E球的理想边界上,这不需要先前的标签知识。为了能够计算邻近的理想原型,我们介绍了受到惩罚的Busemann损失。我们提供了支持使用理想原型和建议损失的理论,通过证明其在一维案件中的物流回归。凭经验,我们表明我们的方法提供了对分类信心的自然解释,而最近的最近的超球和双曲线原型方法。
translated by 谷歌翻译
视觉识别任务通常限于处理小型类的小型,因为剩余类别不可用。我们有兴趣通过基于标记和未标记的示例的表示学习来识别数据集中的新颖概念,并将识别的视野扩展到已知和新型类别。为了解决这一具有挑战性的任务,我们提出了一种组合学习方法,其自然地使用由异构标签空间上的多个监督元分类器给出的组成知识来委托未经组合的类别。组合嵌入给出的表示通过一致性正则化进行了更强大的。我们还介绍了公制学习策略,以估算成对伪标签,以改善未标记的例子的表示,其有效地保护了朝着所知和新型课程的语义关系。该算法通过联合优化提高了看不见的课程的歧视以及学习知名课程的表示,通过联合优化来发现新颖的概念,以便更广泛地提高到新颖的课程。我们广泛的实验通过多种图像检索和新型类发现基准中的提出方法表现出显着的性能。
translated by 谷歌翻译
为了训练强大的深神经网络(DNNS),我们系统地研究了几种目标修饰方法,其中包括输出正则化,自我和非自动标签校正(LC)。发现了三个关键问题:(1)自我LC是最吸引人的,因为它利用了自己的知识,不需要额外的模型。但是,在文献中,如何自动确定学习者的信任程度并没有很好地回答。 (2)一些方法会受到惩罚,而另一些方法奖励低渗透预测,促使我们询问哪一种更好。 (3)使用标准训练设置,当存在严重的噪音时,受过训练的网络的信心较低,因此很难利用其高渗透自我知识。为了解决问题(1),采取两个良好接受的命题 - 深度神经网络在拟合噪声和最小熵正则原理之前学习有意义的模式 - 我们提出了一种名为Proselflc的新颖的端到端方法,该方法是根据根据学习时间和熵。具体而言,给定数据点,如果对模型进行了足够的时间训练,并且预测的熵较低(置信度很高),则我们逐渐增加对预测标签分布的信任与其注释的信任。根据ProSelfLC的说法,对于(2),我们从经验上证明,最好重新定义有意义的低渗透状态并优化学习者对其进行优化。这是防御熵最小化的防御。为了解决该问题(3),我们在利用低温以纠正标签之前使用低温降低了自我知识的熵,因此修订后的标签重新定义了低渗透目标状态。我们通过在清洁和嘈杂的环境以及图像和蛋白质数据集中进行广泛的实验来证明ProSelfLC的有效性。此外,我们的源代码可在https://github.com/xinshaoamoswang/proselflc-at上获得。
translated by 谷歌翻译
深度度量学习算法旨在学习有效的嵌入空间,以保持输入数据之间的相似性关系。尽管这些算法在广泛的任务中取得了显着的性能增长,但它们也未能考虑并增加全面的相似性约束。因此,在嵌入空间中学习了亚最佳度量。而且,到目前为止;关于它们在嘈杂标签的存在方面的研究很少。在这里,我们通过设计一个新颖而有效的深层差异损失(DCDL)功能来解决学习歧视性深层嵌入空间的关注和每个班级。在存在和没有噪声的情况下,我们在三个标准图像分类数据集和两个细粒图像识别数据集中的经验结果清楚地表明,在学习歧视性嵌入空间的同时,需要将这种类似的相似性关系以及传统算法结合在一起。
translated by 谷歌翻译
知识蒸馏(KD)是一个有效的框架,旨在将有意义的信息从大型老师转移到较小的学生。通常,KD通常涉及如何定义和转移知识。以前的KD方法通常着重于挖掘各种形式的知识,例如功能地图和精致信息。但是,知识源自主要监督任务,因此是高度特定于任务的。在自我监督的代表学习的最新成功中,我们提出了一项辅助自我实施的增强任务,以指导网络学习更多有意义的功能。因此,我们可以从KD的这项任务中得出软性自我实施的增强分布作为更丰富的黑暗知识。与以前的知识不同,此分布编码从监督和自我监督的特征学习中编码联合知识。除了知识探索之外,我们建议在各个隐藏层上附加几个辅助分支,以充分利用分层特征图。每个辅助分支都被指导学习自学的增强任务,并将这种分布从教师到学生提炼。总体而言,我们称我们的KD方法为等级自我实施的增强知识蒸馏(HSSAKD)。标准图像分类的实验表明,离线和在线HSSAKD都在KD领域达到了最先进的表现。对象检测的进一步转移实验进一步验证了HSSAKD可以指导网络学习更好的功能。该代码可在https://github.com/winycg/hsakd上找到。
translated by 谷歌翻译
横向渗透丢失是用于训练深度学习和梯度提升的标准度量。众所周知,此损耗函数无法说明目标不同值之间的相似性。我们提出了一个称为{\ em结构化熵}的熵的概括,该熵使用随机分区以保留标准熵的许多理论特性的方式使用随机分区结合目标变量的结构。我们表明,在目标变量具有先验已知结构的几个分类问题上,结构化的跨透明损失会产生更好的结果。该方法简单,灵活,易于计算,并且不依赖于层次定义的结构概念。
translated by 谷歌翻译
标记分类数据集意味着定义类和相关的粗标签,这可能会近似一个更光滑,更复杂的地面真理。例如,自然图像可能包含多个对象,其中只有一个对象在许多视觉数据集中标记,或者可以是由于回归问题的离散化而导致的。在此类粗标签上使用跨凝结训练分类模型可能会大致介绍特征空间,可能会忽略最有意义的此类功能,特别是在基础细粒任务上失去信息。在本文中,我们对仅在粗粒标签上训练的模型来解决细粒分类或回归的问题感兴趣。我们表明,标准的跨凝结可能导致与粗相关的特征过度拟合。我们引入了基于熵的正则化,以促进训练有素的模型的特征空间中的更多多样性,并从经验上证明了这种方法的功效,以在细粒度问题上提高性能。通过理论发展和经验验证,我们的结果得到了支持。
translated by 谷歌翻译