在本文中,我们主要关注如何通过借口任务(例如旋转或颜色置换等)学习其他特征表示形式的其他特征表示形式。借口任务产生的这种附加知识可以进一步提高几次学习(FSL)的性能,因为它与人类通知的监督(即FSL任务的类标签)有所不同。为了解决此问题,我们提出了插入式层次树结构感知(HTS)方法,该方法不仅了解FSL和借口任务的关系,而且更重要的是,可以自适应地选择和汇总由借口任务生成的特征表示,以最大化FSL任务的性能。引入了层次树构造组件和封闭式选择汇总组件来构建树结构并找到更丰富的可转移知识,这些知识可以迅速适应具有一些标记的图像的新颖类。广泛的实验表明,我们的HTS可以显着增强多种几次方法,以在四个基准数据集上实现新的最新性能。该代码可在以下网址获得:https://github.com/remimz/hts-eccv22。
translated by 谷歌翻译
很少有学习的学习(FSL)旨在学习一个可以轻松适应新颖课程的分类器,只有几个标签的示例,限制数据使这项任务挑战深度学习。基于量子指标的方法已实现了有希望的表现基于图像级的功能。但是,这些全球特征忽略了丰富的本地和结构信息,这些信息在可见的和看不见的类之间都是可以转移和一致的。认知科学的某些研究认为,人类可以识别出具有学识渊博的新颖类。我们希望挖掘出来可以从基础类别转移和判别性表示,并采用它们以识别新的课程。建立情节训练机制,我们提出了一个原始的采矿和推理网络(PMRN),以端到端的方式学习原始感知的表示,以进行度量。基于基于FSL模型。我们首先添加自学辅助任务,迫使功能提取器学习与原始词相对应的电视模式。为了进一步挖掘并产生可转移的原始感知表示形式,我们设计了一个自适应通道组(ACG)模块,以通过增强信息通道图的同时抑制无用的通道图,从而从对象嵌入中合成一组视觉原语。基于学到的原始功能,提出了一个语义相关推理(SCR)模块来捕获它们之间的内部关系。在本文中,我们了解原始词的特定于任务的重要性,并基于特定于任务的注意力功能进行原始级别的度量。广泛的实验表明,我们的方法在六个标准基准下实现了最先进的结果。
translated by 谷歌翻译
很少有图像分类是一个具有挑战性的问题,旨在仅基于少量培训图像来达到人类的识别水平。少数图像分类的一种主要解决方案是深度度量学习。这些方法是,通过将看不见的样本根据距离的距离进行分类,可在强大的深神经网络中学到的嵌入空间中看到的样品,可以避免以少数图像分类的少数训练图像过度拟合,并实现了最新的图像表现。在本文中,我们提供了对深度度量学习方法的最新审查,以进行2018年至2022年的少量图像分类,并根据度量学习的三个阶段将它们分为三组,即学习功能嵌入,学习课堂表示和学习距离措施。通过这种分类法,我们确定了他们面临的不同方法和问题的新颖性。我们通过讨论当前的挑战和未来趋势进行了少量图像分类的讨论。
translated by 谷歌翻译
元学习已成为几乎没有图像分类的实用方法,在该方法中,“学习分类器的策略”是在标记的基础类别上进行元学习的,并且可以应用于具有新颖类的任务。我们删除了基类标签的要求,并通过无监督的元学习(UML)学习可通用的嵌入。具体而言,任务发作是在元训练过程中使用未标记的基本类别的数据增强构建的,并且我们将基于嵌入式的分类器应用于新的任务,并在元测试期间使用标记的少量示例。我们观察到两个元素在UML中扮演着重要角色,即进行样本任务和衡量实例之间的相似性的方法。因此,我们获得了具有两个简单修改的​​强基线 - 一个足够的采样策略,每情节有效地构建多个任务以及半分解的相似性。然后,我们利用来自两个方向的任务特征以获得进一步的改进。首先,合成的混淆实例被合并以帮助提取更多的判别嵌入。其次,我们利用额外的特定任务嵌入转换作为元训练期间的辅助组件,以促进预先适应的嵌入式的概括能力。几乎没有学习基准的实验证明,我们的方法比以前的UML方法优于先前的UML方法,并且比其监督变体获得了可比甚至更好的性能。
translated by 谷歌翻译
Few-shot classification aims to recognize unlabeled samples from unseen classes given only few labeled samples. The unseen classes and low-data problem make few-shot classification very challenging. Many existing approaches extracted features from labeled and unlabeled samples independently, as a result, the features are not discriminative enough. In this work, we propose a novel Cross Attention Network to address the challenging problems in few-shot classification. Firstly, Cross Attention Module is introduced to deal with the problem of unseen classes. The module generates cross attention maps for each pair of class feature and query sample feature so as to highlight the target object regions, making the extracted feature more discriminative. Secondly, a transductive inference algorithm is proposed to alleviate the low-data problem, which iteratively utilizes the unlabeled query set to augment the support set, thereby making the class features more representative. Extensive experiments on two benchmarks show our method is a simple, effective and computationally efficient framework and outperforms the state-of-the-arts.
translated by 谷歌翻译
很少有视觉识别是指从一些标记实例中识别新颖的视觉概念。通过将查询表示形式与类表征进行比较以预测查询实例的类别,许多少数射击的视觉识别方法采用了基于公制的元学习范式。但是,当前基于度量的方法通常平等地对待所有实例,因此通常会获得有偏见的类表示,考虑到并非所有实例在总结了类级表示的实例级表示时都同样重要。例如,某些实例可能包含无代表性的信息,例如过多的背景和无关概念的信息,这使结果偏差。为了解决上述问题,我们提出了一个新型的基于公制的元学习框架,称为实例自适应类别表示网络(ICRL-net),以进行几次视觉识别。具体而言,我们开发了一个自适应实例重新平衡网络,具有在生成班级表示,通过学习和分配自适应权重的不同实例中的自适应权重时,根据其在相应类的支持集中的相对意义来解决偏见的表示问题。此外,我们设计了改进的双线性实例表示,并结合了两个新型的结构损失,即,阶层内实例聚类损失和阶层间表示区分损失,以进一步调节实例重估过程并完善类表示。我们对四个通常采用的几个基准测试:Miniimagenet,Tieredimagenet,Cifar-FS和FC100数据集进行了广泛的实验。与最先进的方法相比,实验结果证明了我们的ICRL-NET的优势。
translated by 谷歌翻译
少量学习,特别是几秒钟的图像分类,近年来受到了越来越多的关注,并目睹了重大进展。最近的一些研究暗示表明,许多通用技术或“诀窍”,如数据增强,预训练,知识蒸馏和自我监督,可能大大提高了几次学习方法的性能。此外,不同的作品可以采用不同的软件平台,不同的训练计划,不同的骨干架构以及甚至不同的输入图像大小,使得公平的比较困难,从业者与再现性斗争。为了解决这些情况,通过在Pytorch中的同一单个代码库中重新实施17个最新的框架,提出了几次射门学习(Libfewshot)的全面图书馆。此外,基于libfewshot,我们提供多个基准数据集的全面评估,其中包含多个骨干架构,以评估不同培训技巧的常见缺陷和效果。此外,鉴于近期对必要性或未培训机制的必要性怀疑,我们的评估结果表明,特别是当与预训练相结合时,仍然需要这种机制。我们希望我们的工作不仅可以降低初学者的障碍,可以在几次学习上工作,而且还消除了非动力技巧的影响,促进了几枪学习的内在研究。源代码可从https://github.com/rl-vig/libfewshot获取。
translated by 谷歌翻译
传统的细颗粒图像分类通常依赖于带注释的地面真相的大规模训练样本。但是,某些子类别在实际应用中可能几乎没有可用的样本。在本文中,我们建议使用多频邻域(MFN)和双交叉调制(DCM)提出一个新颖的几弹性细颗粒图像分类网络(FICNET)。采用模块MFN来捕获空间域和频域中的信息。然后,提取自相似性和多频成分以产生多频结构表示。 DCM使用分别考虑全球环境信息和类别之间的微妙关系来调节嵌入过程。针对两个少量任务的三个细粒基准数据集进行的综合实验验证了FICNET与最先进的方法相比具有出色的性能。特别是,在两个数据集“ Caltech-UCSD鸟”和“ Stanford Cars”上进行的实验分别可以获得分类精度93.17 \%和95.36 \%。它们甚至高于一般的细粒图像分类方法可以实现的。
translated by 谷歌翻译
The task of Few-shot learning (FSL) aims to transfer the knowledge learned from base categories with sufficient labelled data to novel categories with scarce known information. It is currently an important research question and has great practical values in the real-world applications. Despite extensive previous efforts are made on few-shot learning tasks, we emphasize that most existing methods did not take into account the distributional shift caused by sample selection bias in the FSL scenario. Such a selection bias can induce spurious correlation between the semantic causal features, that are causally and semantically related to the class label, and the other non-causal features. Critically, the former ones should be invariant across changes in distributions, highly related to the classes of interest, and thus well generalizable to novel classes, while the latter ones are not stable to changes in the distribution. To resolve this problem, we propose a novel data augmentation strategy dubbed as PatchMix that can break this spurious dependency by replacing the patch-level information and supervision of the query images with random gallery images from different classes from the query ones. We theoretically show that such an augmentation mechanism, different from existing ones, is able to identify the causal features. To further make these features to be discriminative enough for classification, we propose Correlation-guided Reconstruction (CGR) and Hardness-Aware module for instance discrimination and easier discrimination between similar classes. Moreover, such a framework can be adapted to the unsupervised FSL scenario.
translated by 谷歌翻译
由顺序训练和元训练阶段组成的两阶段训练范式已广泛用于当前的几次学习(FSL)研究。这些方法中的许多方法都使用自我监督的学习和对比度学习来实现新的最新结果。但是,在FSL培训范式的两个阶段,对比度学习的潜力仍未得到充分利用。在本文中,我们提出了一个新颖的基于学习的框架,该框架将对比度学习无缝地整合到两个阶段中,以提高少量分类的性能。在预训练阶段,我们提出了特征向量与特征映射和特征映射与特征映射的形式的自我监督对比损失,该图形与特征映射使用全局和本地信息来学习良好的初始表示形式。在元训练阶段,我们提出了一种跨视图的情节训练机制,以对同一情节的两个不同视图进行最近的质心分类,并采用基于它们的距离尺度对比度损失。这两种策略迫使模型克服观点之间的偏见并促进表示形式的可转让性。在三个基准数据集上进行的广泛实验表明,我们的方法可以实现竞争成果。
translated by 谷歌翻译
在这项工作中,我们建议使用分布式样本,即来自目标类别外部的未标记样本,以改善几乎没有记录的学习。具体而言,我们利用易于可用的分布样品来驱动分类器,以避免通过最大化原型到分布样品的距离,同时最大程度地减少分布样品的距离(即支持,查询数据),以避免使用分类器。。我们的方法易于实施,不可知论的是提取器,轻量级,而没有任何额外的预训练费用,并且适用于归纳和跨传输设置。对各种标准基准测试的广泛实验表明,所提出的方法始终提高具有不同架构的预审计网络的性能。
translated by 谷歌翻译
从一个非常少数标记的样品中学习新颖的课程引起了机器学习区域的越来越高。最近关于基于元学习或转移学习的基于范例的研究表明,良好特征空间的获取信息可以是在几次拍摄任务上实现有利性能的有效解决方案。在本文中,我们提出了一种简单但有效的范式,该范式解耦了学习特征表示和分类器的任务,并且只能通过典型的传送学习培训策略从基类嵌入体系结构的特征。为了在每个类别内保持跨基地和新类别和辨别能力的泛化能力,我们提出了一种双路径特征学习方案,其有效地结合了与对比特征结构的结构相似性。以这种方式,内部级别对齐和级别的均匀性可以很好地平衡,并且导致性能提高。三个流行基准测试的实验表明,当与简单的基于原型的分类器结合起来时,我们的方法仍然可以在电感或转换推理设置中的标准和广义的几次射击问题达到有希望的结果。
translated by 谷歌翻译
新课程经常出现在我们不断变化的世界中,例如社交媒体中的新兴主题和电子商务中的新产品。模型应识别新的类,同时保持对旧类的可区分性。在严重的情况下,只有有限的新颖实例可以逐步更新模型。在不忘记旧课程的情况下识别几个新课程的任务称为少数类的课程学习(FSCIL)。在这项工作中,我们通过学习多相增量任务(limit)提出了一个基于元学习的FSCIL的新范式,该任务从基本数据集中综合了伪造的FSCIL任务。假任务的数据格式与“真实”的增量任务一致,我们可以通过元学习构建可概括的特征空间。此外,限制还基于变压器构建了一个校准模块,该模块将旧类分类器和新类原型校准为相同的比例,并填补语义间隙。校准模块还可以自适应地将具有设置对集合函数的特定于实例的嵌入方式化。限制有效地适应新课程,同时拒绝忘记旧课程。在三个基准数据集(CIFAR100,Miniimagenet和Cub200)和大规模数据集上进行的实验,即Imagenet ILSVRC2012验证以实现最新性能。
translated by 谷歌翻译
The focus of recent meta-learning research has been on the development of learning algorithms that can quickly adapt to test time tasks with limited data and low computational cost. Few-shot learning is widely used as one of the standard benchmarks in meta-learning. In this work, we show that a simple baseline: learning a supervised or selfsupervised representation on the meta-training set, followed by training a linear classifier on top of this representation, outperforms state-of-the-art few-shot learning methods. An additional boost can be achieved through the use of selfdistillation. This demonstrates that using a good learned embedding model can be more effective than sophisticated meta-learning algorithms. We believe that our findings motivate a rethinking of few-shot image classification benchmarks and the associated role of meta-learning algorithms.
translated by 谷歌翻译
大多数现有的少量学习(FSL)方法都需要大量的元训练中标记数据,这是一个主要限制。为了减少标签的需求,已经为FSL提出了半监督的元训练设置,其中仅包括几个标记的样品和基础类别中的未标记样本数量。但是,此设置下的现有方法需要从未标记的集合中选择类吸引的样本选择,这违反了未标记集的假设。在本文中,我们提出了一个实用的半监督元训练环境,并使用真正的未标记数据。在新设置下,现有方法的性能显着下降。为了更好地利用标签和真正未标记的数据,我们提出了一个简单有效的元训练框架,称为基于元学习(PLML)的伪标记。首先,我们通过常见的半监督学习(SSL)训练分类器,并使用它来获取未标记数据的伪标记。然后,我们从标记和伪标记的数据中构建了几个射击任务,并在构造的任务上运行元学习以学习FSL模型。令人惊讶的是,通过在两个FSL数据集的广泛实验中,我们发现这个简单的元训练框架有效地防止了在有限的标记数据下FSL的性能降解。此外,从元培训中受益,提出的方法还改善了两种代表性SSL算法所学的分类器。
translated by 谷歌翻译
教学机器根据少数训练样本认识到一个新的类别,特别是由于缺乏数据缺乏的新型类别的难题了解,只有一个仍然挑战。然而,人类可以快速学习新课程,甚至在人类可以讲述基于视觉和语义先前知识的关于每个类别的歧视特征时,甚至给出了一些样本。为了更好地利用这些先验知识,我们提出了语义引导的注意力(SEGA)机制,其中语义知识用于以自上而下的方式引导视觉感知,在区分类别时应注意哪些视觉特征。结果,即使少量样品也可以更具判别嵌入新类。具体地,借助从基类传输可视化的先验知识,接受了一个特征提取器,以培训以将每个小组类的数量的每个小组的图像嵌入到视觉原型中。然后,我们学习一个网络将语义知识映射到特定于类别的注意力矢量,该向量将用于执行功能选择以增强视觉原型。在Miniimagenet,Tieredimagenet,CiFar-FS和Cub上进行了广泛的实验表明,我们的语义引导的注意力实现了预期的功能和优于最先进的结果。
translated by 谷歌翻译
从有限的数据学习是一个具有挑战性的任务,因为数据的稀缺导致训练型模型的较差。经典的全局汇总表示可能会失去有用的本地信息。最近,许多射击学习方法通​​过使用深度描述符和学习像素级度量来解决这一挑战。但是,使用深描述符作为特征表示可能丢失图像的上下文信息。这些方法中的大多数方法独立地处理支持集中的每个类,这不能充分利用鉴别性信息和特定于特定的嵌入。在本文中,我们提出了一种名为稀疏空间变压器(SSFormers)的新型变压器的神经网络架构,可以找到任务相关的功能并抑制任务无关的功能。具体地,我们首先将每个输入图像划分为不同大小的几个图像斑块,以获得密集的局部特征。这些功能在表达本地信息时保留上下文信息。然后,提出了一种稀疏的空间变压器层以在查询图像和整个支持集之间找到空间对应关系,以选择任务相关的图像斑块并抑制任务 - 无关的图像斑块。最后,我们建议使用图像补丁匹配模块来计算密集的本地表示之间的距离,从而确定查询图像属于支持集中的哪个类别。广泛的少量学习基准测试表明,我们的方法实现了最先进的性能。
translated by 谷歌翻译
大多数元学习方法都假设存在于可用于基本知识的情节元学习的一组非常大的标记数据。这与更现实的持续学习范例形成对比,其中数据以包含不相交类的任务的形式逐步到达。在本文中,我们考虑了这个增量元学习(IML)的这个问题,其中类在离散任务中逐步呈现。我们提出了一种方法,我们调用了IML,我们称之为eCISODIC重播蒸馏(ERD),该方法将来自当前任务的类混合到当前任务中,当研究剧集时,来自先前任务的类别示例。然后将这些剧集用于知识蒸馏以最大限度地减少灾难性的遗忘。四个数据集的实验表明ERD超越了最先进的。特别是,在一次挑战的单次次数较挑战,长任务序列增量元学习场景中,我们将IML和联合训练与当前状态的3.5%/ 10.1%/ 13.4%之间的差距降低我们在Diered-ImageNet / Mini-ImageNet / CIFAR100上分别为2.6%/ 2.9%/ 5.0%。
translated by 谷歌翻译
基于元学习的现有方法通过从(源域)基础类别的培训任务中学到的元知识来预测(目标域)测试任务的新颖类标签。但是,由于范围内可能存在较大的域差异,大多数现有作品可能无法推广到新颖的类别。为了解决这个问题,我们提出了一种新颖的对抗特征增强(AFA)方法,以弥合域间隙,以几乎没有学习。该特征增强旨在通过最大化域差异来模拟分布变化。在对抗训练期间,通过将增强特征(看不见的域)与原始域(可见域)区分开来学习域歧视器,而将域差异最小化以获得最佳特征编码器。所提出的方法是一个插件模块,可以轻松地基于元学习的方式将其集成到现有的几种学习方法中。在九个数据集上进行的广泛实验证明了我们方法对跨域几乎没有射击分类的优越性,与最新技术相比。代码可从https://github.com/youthhoo/afa_for_few_shot_learning获得
translated by 谷歌翻译
Given sufficient training data on the source domain, cross-domain few-shot learning (CD-FSL) aims at recognizing new classes with a small number of labeled examples on the target domain. The key to addressing CD-FSL is to narrow the domain gap and transferring knowledge of a network trained on the source domain to the target domain. To help knowledge transfer, this paper introduces an intermediate domain generated by mixing images in the source and the target domain. Specifically, to generate the optimal intermediate domain for different target data, we propose a novel target guided dynamic mixup (TGDM) framework that leverages the target data to guide the generation of mixed images via dynamic mixup. The proposed TGDM framework contains a Mixup-3T network for learning classifiers and a dynamic ratio generation network (DRGN) for learning the optimal mix ratio. To better transfer the knowledge, the proposed Mixup-3T network contains three branches with shared parameters for classifying classes in the source domain, target domain, and intermediate domain. To generate the optimal intermediate domain, the DRGN learns to generate an optimal mix ratio according to the performance on auxiliary target data. Then, the whole TGDM framework is trained via bi-level meta-learning so that TGDM can rectify itself to achieve optimal performance on target data. Extensive experimental results on several benchmark datasets verify the effectiveness of our method.
translated by 谷歌翻译