深度神经网络(DNN)的训练过程通常是用阶段进行管道的,用于在CPU上进行数据制备,然后对GPU等加速器进行梯度计算。在理想的管道中,端到端训练吞吐量最终受到加速器的吞吐量的限制,而不是数据准备。过去,DNN训练管道通过使用使用轻巧,有损的图像格式(如JPEG)编码的数据集实现了近乎最佳的吞吐量。但是,随着高分辨率,无损编码的数据集变得越来越流行,对于需要高精度的应用程序,由于CPU上的低通量图像解码,在数据准备阶段出现了性能问题。因此,我们提出了L3,这是一种用于高分辨率,高通量DNN训练的定制轻巧,无损的图像格式。 L3的解码过程在加速器上有效平行,从而最大程度地减少了在DNN培训期间进行数据制备的CPU干预。 L3比最流行的无损图像格式PNG获得了9.29倍的数据准备吞吐量,用于NVIDIA A100 GPU上的CityScapes数据集,该数据集可导致1.71倍更高的端到端训练吞吐量。与JPEG和WebP相比,两种流行的有损图像格式,L3分别以同等的度量性能为Imagenet提供高达1.77倍和2.87倍的端到端训练吞吐量。
translated by 谷歌翻译
现代回顾性分析系统利用级联体系结构减轻瓶颈来计算深神经网络(DNNS)。但是,现有的级联反应有两个局限性:(1)解码瓶颈要么被忽视或规避,要支付重大的计算和存储成本以进行预处理; (2)系统专门用于时间查询,缺乏空间查询支持。本文介绍了COVA,这是一种新颖的级联体系结构,该结构将压缩域和像素域之间的级联计算分开以解决解码瓶颈,从而支持时间和空间查询。 COVA级联分析分为三个主要阶段,其中前两个阶段是在压缩域中执行的,而在像素域中的最后一个阶段。首先,COVA检测一组压缩帧(称为轨道)上移动对象(称为斑点)的出现。然后,使用轨道结果,Cova谨慎地选择了一组最小的帧以获取标签信息,并仅解码它们以计算完整的DNN,从而减轻了解码的瓶颈。最后,Cova将轨道与标签相结合,以产生最终分析结果,用户可以处理时间和空间查询。我们的实验表明,COVA对现代级联系统提供了4.8倍的吞吐量改进,同时施加了适度的精度损失。
translated by 谷歌翻译
本文介绍了有关如何架构,设计和优化深神经网络(DNN)的最新概述,以提高性能并保留准确性。该论文涵盖了一组跨越整个机器学习处理管道的优化。我们介绍两种类型的优化。第一个改变了DNN模型,需要重新训练,而第二个则不训练。我们专注于GPU优化,但我们认为提供的技术可以与其他AI推理平台一起使用。为了展示DNN模型优化,我们在流行的Edge AI推理平台(Nvidia Jetson Agx Xavier)上改善了光流的最先进的深层网络体系结构之一,RAFT ARXIV:2003.12039。
translated by 谷歌翻译
变形金刚是一种深入学习语言模型,用于数据中心中的自然语言处理(NLP)服务。在变压器模型中,生成的预训练的变压器(GPT)在文本生成或自然语言生成(NLG)中取得了显着的性能,它需要在摘要阶段处理大型输入上下文,然后是产生一个生成阶段的一次单词。常规平台(例如GPU)专门用于在摘要阶段平行处理大型输入,但是由于其顺序特征,它们的性能在生成阶段显着降低。因此,需要一个有效的硬件平台来解决由文本生成的顺序特征引起的高潜伏期。在本文中,我们提出了DFX,这是一种多FPGA加速器,该设备在摘要和发电阶段中执行GPT-2模型端到端,并具有低延迟和高吞吐量。 DFX使用模型并行性和优化的数据流,这是模型和硬件感知的设备之间快速同时执行执行。其计算核心根据自定义说明运行,并提供GPT-2操作端到端。我们在四个Xilinx Alveo U280 FPGAS上实现了建议的硬件体系结构,并利用了高带宽内存(HBM)的所有频道,以及用于高硬件效率的最大计算资源数量。 DFX在现代GPT-2模型上实现了四个NVIDIA V100 GPU的5.58倍加速度和3.99倍的能效。 DFX的成本效益比GPU设备更具成本效益,这表明它是云数据中心中文本生成工作负载的有前途解决方案。
translated by 谷歌翻译
我们在并行计算机架构上的图像的自适应粒子表示(APR)上的离散卷积运算符的本机实现数据结构和算法。 APR是一个内容 - 自适应图像表示,其本地地将采样分辨率局部调整到图像信号。已经开发为大,稀疏图像的像素表示的替代方案,因为它们通常在荧光显微镜中发生。已经显示出降低存储,可视化和处理此类图像的存储器和运行时成本。然而,这要求图像处理本身在APRS上运行,而无需中间恢复为像素。然而,设计高效和可扩展的APR-Native图像处理原语是APR的不规则内存结构的复杂性。这里,我们提供了使用可以在离散卷积方面配制的各种算法有效和本地地处理APR图像所需的算法建筑块。我们表明APR卷积自然地导致缩放 - 自适应算法,可在多核CPU和GPU架构上有效地平行化。与基于像素的算法和概念性数据的卷积相比,我们量化了加速度。我们在单个NVIDIA GeForce RTX 2080 Gaming GPU上实现了最多1 TB / s的像素等效吞吐量,而不是基于像素的实现的存储器最多两个数量级。
translated by 谷歌翻译
Deep neural networks (DNNs) are currently widely used for many artificial intelligence (AI) applications including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Accordingly, techniques that enable efficient processing of DNNs to improve energy efficiency and throughput without sacrificing application accuracy or increasing hardware cost are critical to the wide deployment of DNNs in AI systems.This article aims to provide a comprehensive tutorial and survey about the recent advances towards the goal of enabling efficient processing of DNNs. Specifically, it will provide an overview of DNNs, discuss various hardware platforms and architectures that support DNNs, and highlight key trends in reducing the computation cost of DNNs either solely via hardware design changes or via joint hardware design and DNN algorithm changes. It will also summarize various development resources that enable researchers and practitioners to quickly get started in this field, and highlight important benchmarking metrics and design considerations that should be used for evaluating the rapidly growing number of DNN hardware designs, optionally including algorithmic co-designs, being proposed in academia and industry.The reader will take away the following concepts from this article: understand the key design considerations for DNNs; be able to evaluate different DNN hardware implementations with benchmarks and comparison metrics; understand the trade-offs between various hardware architectures and platforms; be able to evaluate the utility of various DNN design techniques for efficient processing; and understand recent implementation trends and opportunities.
translated by 谷歌翻译
各种图形渲染和处理操作需要深度图。当在分布式系统中执行此类操作时,经常需要深度图流量流,并且在大多数情况下需要快速执行压缩,这就是为什么经常使用视频编解码器的原因。标准视频编解码器的硬件实现甚至可以在资源约束的设备上实现相对较高的分辨率和帧率组合,但是不幸的是,这些实现当前不支持RGB+深度扩展。但是,它们可以通过将深度图填充到RGB或YUV框架中来用于深度压缩。我们使用深度图包装的组合研究深度图压缩,然后使用标准视频编解码器进行编码。我们表明,深度图被包装的精度对由包装方案的组合和限制性压缩造成的误差产生了巨大而无处不在的影响。因此,我们提出了一个由神经网络模型辅助的可变精度包装方案,该模型可以预测给定比特率约束的每个深度图的最佳精度。我们证明该模型的产生几乎最佳的预测,并且可以将其集成到具有现代硬件的高架开销的游戏引擎中。
translated by 谷歌翻译
State-of-the-art deep neural networks (DNNs) have hundreds of millions of connections and are both computationally and memory intensive, making them difficult to deploy on embedded systems with limited hardware resources and power budgets. While custom hardware helps the computation, fetching weights from DRAM is two orders of magnitude more expensive than ALU operations, and dominates the required power.Previously proposed 'Deep Compression' makes it possible to fit large DNNs (AlexNet and VGGNet) fully in on-chip SRAM. This compression is achieved by pruning the redundant connections and having multiple connections share the same weight. We propose an energy efficient inference engine (EIE) that performs inference on this compressed network model and accelerates the resulting sparse matrix-vector multiplication with weight sharing. Going from DRAM to SRAM gives EIE 120× energy saving; Exploiting sparsity saves 10×; Weight sharing gives 8×; Skipping zero activations from ReLU saves another 3×. Evaluated on nine DNN benchmarks, EIE is 189× and 13× faster when compared to CPU and GPU implementations of the same DNN without compression. EIE has a processing power of 102 GOPS/s working directly on a compressed network, corresponding to 3 TOPS/s on an uncompressed network, and processes FC layers of AlexNet at 1.88×10 4 frames/sec with a power dissipation of only 600mW. It is 24,000× and 3,400× more energy efficient than a CPU and GPU respectively. Compared with DaDianNao, EIE has 2.9×, 19× and 3× better throughput, energy efficiency and area efficiency.
translated by 谷歌翻译
最近,使用卷积神经网络(CNNS)存在移动和嵌入式应用的爆炸性增长。为了减轻其过度的计算需求,开发人员传统上揭示了云卸载,突出了高基础设施成本以及对网络条件的强烈依赖。另一方面,强大的SOC的出现逐渐启用设备执行。尽管如此,低端和中层平台仍然努力充分运行最先进的CNN。在本文中,我们展示了Dyno,一种分布式推断框架,将两全其人的最佳框架结合起来解决了几个挑战,例如设备异质性,不同的带宽和多目标要求。启用这是其新的CNN特定数据包装方法,其在onloading计算时利用CNN的不同部分的精度需求的可变性以及其新颖的调度器,该调度器共同调谐分区点并在运行时传输数据精度适应其执行环境的推理。定量评估表明,Dyno优于当前最先进的,通过竞争对手的CNN卸载系统,在竞争对手的CNN卸载系统上提高吞吐量超过一个数量级,最高可达60倍的数据。
translated by 谷歌翻译
Video, as a key driver in the global explosion of digital information, can create tremendous benefits for human society. Governments and enterprises are deploying innumerable cameras for a variety of applications, e.g., law enforcement, emergency management, traffic control, and security surveillance, all facilitated by video analytics (VA). This trend is spurred by the rapid advancement of deep learning (DL), which enables more precise models for object classification, detection, and tracking. Meanwhile, with the proliferation of Internet-connected devices, massive amounts of data are generated daily, overwhelming the cloud. Edge computing, an emerging paradigm that moves workloads and services from the network core to the network edge, has been widely recognized as a promising solution. The resulting new intersection, edge video analytics (EVA), begins to attract widespread attention. Nevertheless, only a few loosely-related surveys exist on this topic. A dedicated venue for collecting and summarizing the latest advances of EVA is highly desired by the community. Besides, the basic concepts of EVA (e.g., definition, architectures, etc.) are ambiguous and neglected by these surveys due to the rapid development of this domain. A thorough clarification is needed to facilitate a consensus on these concepts. To fill in these gaps, we conduct a comprehensive survey of the recent efforts on EVA. In this paper, we first review the fundamentals of edge computing, followed by an overview of VA. The EVA system and its enabling techniques are discussed next. In addition, we introduce prevalent frameworks and datasets to aid future researchers in the development of EVA systems. Finally, we discuss existing challenges and foresee future research directions. We believe this survey will help readers comprehend the relationship between VA and edge computing, and spark new ideas on EVA.
translated by 谷歌翻译
学习的图像压缩允许达到最新的准确性和压缩比,但是它们相对较慢的运行时性能限制了其使用情况。尽管以前的尝试优化学习的图像编解码器的尝试更多地集中在神经模型和熵编码上,但我们提出了一种改善各种学习图像压缩模型的运行时性能的替代方法。我们介绍了多线程管道和优化的内存模型,以完全利用计算资源来启用GPU和CPU工作负载异步执行。仅我们的架构就已经产生了出色的性能,而没有改变神经模型本身。我们还证明,将架构与以前的调整结合到神经模型可以进一步提高运行时性能。我们表明,与基线相比,我们的实现在吞吐量和延迟中表现出色,并通过创建实时视频流编码器示例应用程序来证明我们的实现的性能,并在嵌入式设备上运行编码器。
translated by 谷歌翻译
基于生成模型的图像无损压缩算法在改善压缩比方面取得了巨大的成功。但是,即使使用最先进的AI加速芯片,它们中大多数的吞吐量也小于1 Mb/s,从而阻止了它们的大多数现实应用应用,通常需要100 MB/s。在本文中,我们提出了PILC,这是一种端到端图像无损压缩框架,使用单个NVIDIA TESLA V100 GPU实现200 Mb/s的压缩和减压,比以前最有效的速度快10倍。为了获得此结果,我们首先开发了一个AI编解码器,该AI编解码器结合了自动回归模型和VQ-VAE,在轻质设置中性能很好,然后我们设计了一个低复杂性熵编码器,可与我们的编解码器配合使用。实验表明,在多个数据集中,我们的框架压缩比PNG高30%。我们认为,这是将AI压缩推向商业用途的重要步骤。
translated by 谷歌翻译
输入管道,其摄取和转换输入数据,是培训机器学习(ML)模型的重要组成部分。然而,实现有效的输入管道有挑战性,因为它需要推理有关并行性,异步的推理和细粒度分析信息的可变性。我们对谷歌数据中心超过200万毫升工作的分析表明,大量模型培训工作可以从更快的输入数据管道中受益。与此同时,我们的分析表明,大多数工作都不饱和主机硬件,指向基于软件的瓶颈的方向。这些发现的动机,我们提出了水管工,一种用于在ML输入管道中找到瓶颈的工具。管道工使用可扩展和可解释的操作分析分析模型来自动调整Host资源约束下的并行性,预取和缓存。在五个代表性ML管道上,水管工可获得最多46倍的误配置管道的加速。通过自动化缓存,与最先进的调谐器相比,水管工获得超过40%的端到端加速。
translated by 谷歌翻译
最近,Graph神经网络(GNNS)已成为聚光灯作为强大的工具,可以有效地在图形结构化数据上执行各种推理任务。随着现实图表的大小继续扩展,GNN训练系统面临可扩展性挑战。分布式培训是一种流行的方法,可以通过扩展CPU节点来应对这一挑战。但是,对基于磁盘的GNN培训的关注不多,该培训可以通过利用NVME SSD等高性能存储设备来以更具成本效益的方式扩展单节点系统。我们观察到,主内存和磁盘之间的数据移动是基于SSD的训练系统中的主要瓶颈,并且常规的GNN训练管道是不错的选择,而无需考虑此开销。因此,我们提出了Ginex,这是第一个基于SSD的GNN训练系统,可以在单台计算机上处​​理数十亿个图形数据集。受到编译器优化的检查员执行模型的启发,Ginex通过分开样品和收集阶段来重组GNN训练管道。这种分离使Ginex能够实现一种可证明的最佳替换算法,即被称为Belady的算法,用于存储器中的Caching特征向量,该算法是I/O访问的主要部分。根据我们对40亿尺度图数据集的评估,Ginex平均比SSD扩展的Pytorch几何得出了2.11倍的训练吞吐量(最大最高2.67倍)。
translated by 谷歌翻译
Binary Neural Networks (BNNs) are showing tremendous success on realistic image classification tasks. Notably, their accuracy is similar to the state-of-the-art accuracy obtained by full-precision models tailored to edge devices. In this regard, BNNs are very amenable to edge devices since they employ 1-bit to store the inputs and weights, and thus, their storage requirements are low. Also, BNNs computations are mainly done using xnor and pop-counts operations which are implemented very efficiently using simple hardware structures. Nonetheless, supporting BNNs efficiently on mobile CPUs is far from trivial since their benefits are hindered by frequent memory accesses to load weights and inputs. In BNNs, a weight or an input is stored using one bit, and aiming to increase storage and computation efficiency, several of them are packed together as a sequence of bits. In this work, we observe that the number of unique sequences representing a set of weights is typically low. Also, we have seen that during the evaluation of a BNN layer, a small group of unique sequences is employed more frequently than others. Accordingly, we propose exploiting this observation by using Huffman Encoding to encode the bit sequences and then using an indirection table to decode them during the BNN evaluation. Also, we propose a clustering scheme to identify the most common sequences of bits and replace the less common ones with some similar common sequences. Hence, we decrease the storage requirements and memory accesses since common sequences are encoded with fewer bits. We extend a mobile CPU by adding a small hardware structure that can efficiently cache and decode the compressed sequence of bits. We evaluate our scheme using the ReAacNet model with the Imagenet dataset. Our experimental results show that our technique can reduce memory requirement by 1.32x and improve performance by 1.35x.
translated by 谷歌翻译
基于von-neumann架构的传统计算系统,数据密集型工作负载和应用程序(如机器学习)和应用程序都是基本上限制的。随着数据移动操作和能量消耗成为计算系统设计中的关键瓶颈,对近数据处理(NDP),机器学习和特别是神经网络(NN)的加速器等非传统方法的兴趣显着增加。诸如Reram和3D堆叠的新兴内存技术,这是有效地架构基于NN的基于NN的加速器,因为它们的工作能力是:高密度/低能量存储和近记忆计算/搜索引擎。在本文中,我们提出了一种为NN设计NDP架构的技术调查。通过基于所采用的内存技术对技术进行分类,我们强调了它们的相似之处和差异。最后,我们讨论了需要探索的开放挑战和未来的观点,以便改进和扩展未来计算平台的NDP架构。本文对计算机学习领域的计算机架构师,芯片设计师和研究人员来说是有价值的。
translated by 谷歌翻译
扩展培训工作负载的能力是深度学习的关键性能推动者之一。主要缩放方法是基于数据并行GPU的培训,该培训已经被硬件和软件支持高效地支持高效的GPU通信,特别是通过带宽过度曝光。此支持以A价格出现:相对于其“消费者级”对应物,“云级”服务器之间存在幅度成本差异,但相对于其“消费者级”对应物,虽然服务器级和消费者级GPU可以具有类似的计算信封。在本文中,我们调查了昂贵的硬件过度控制方法是否可以通过算法和系统设计所涵盖,并提出称为CGX的框架,为通信压缩提供有效的软件支持。我们认为,在没有硬件支持的情况下,该框架能够从消费者级多GPU系统中删除通信瓶颈:在没有硬件支持的情况下:在培训现代模型和全部准确性方面时,我们的框架可以在商品上进行2-3倍的自动加速系统使用8个消费者级NVIDIA RTX 3090 GPU,并使其超越NVIDIA DGX-1服务器的吞吐量,其具有类似的峰值闪光,但是从带宽过度提供的益处。
translated by 谷歌翻译
培训广泛和深度神经网络(DNN)需要大量的存储资源,例如内存,因为在转发传播期间必须在存储器中保存中间激活数据,然后恢复以便向后传播。然而,由于硬件设计约束,诸如GPU之类的最先进的加速器(例如GPU)仅配备了非常有限的存储容量,这显着限制了在训练大规模DNN时的最大批量大小和性能加速。传统的记忆保存技术均受性能开销或受限互连带宽或特定互连技术的约束。在本文中,我们提出了一种新颖的记忆高效的CNN训练框架(称为Comet),利用错误界限的损耗压缩来显着降低训练的内存要求,以允许培训更大的模型或加速培训。不同于采用基于图像的有损压缩机(例如JPEG)的最先进的解决方案来压缩激活数据,我们的框架故意采用严格的错误控制机制来采用错误界限的损耗压缩。具体而言,我们对从改变的激活数据传播到梯度的压缩误差传播的理论分析,并经验探讨改变梯度对训练过程的影响。基于这些分析,我们优化了误报的损耗压缩,并提出了一种用于激活数据压缩的自适应误差控制方案。我们评估我们对最先进的解决方案的设计,其中包含五个广泛采用的CNN和Imagenet DataSet。实验表明,我们所提出的框架可以在基线训练中显着降低13.5倍,并分别在另一个最先进的基于压缩框架上的1.8倍,几乎没有准确性损失。
translated by 谷歌翻译
Segblocks通过根据图像区域的复杂性动态调整处理分辨率来降低现有神经网络的计算成本。我们的方法将图像拆分为低复杂性的块和尺寸块块,从而减少了操作数量和内存消耗的数量。轻量级的政策网络选择复杂区域,是使用强化学习训练的。此外,我们介绍了CUDA中实现的几个模块以处理块中的图像。最重要的是,我们的新颖的阻止模块可以防止现有方法遭受的块边界的特征不连续性,同时保持记忆消耗受到控制。我们对语义分割的城市景观,Camvid和Mapillary Vistas数据集进行的实验表明,与具有相似复杂性的静态基准相比,动态处理图像与复杂性的折衷相对于复杂性更高。例如,我们的方法将SwiftNet-RN18的浮点操作数量降低了60%,并将推理速度提高50%,而CityScapes的MIOU准确性仅降低0.3%。
translated by 谷歌翻译
K-Nearest邻居搜索是各种应用程序中的基本任务之一,层次可导航的小世界(HNSW)最近在大规模云服务中引起了人们的注意,因为它在提供快速搜索的同时很容易扩展数据库。另一方面,将可编程逻辑和单个板上的可编程逻辑模块结合在一起的计算存储设备(CSD)变得流行,以解决现代计算系统的数据带宽瓶颈。在本文中,我们提出了一个计算存储平台,该平台可以加速基于SMARTSSSD CSD的基于图形的最近的邻居搜索算法。为此,我们更修改算法在硬件上更适合,并使用基于HLS和RTL的方法实现两种类型的加速器,并采用各种优化方法。此外,我们扩展了提议的平台,以拥有4个SMARTSSS,并应用图形并行性以进一步提高系统性能。结果,拟议的计算存储平台在258.66W的功率耗散时,SIFT1B数据集的每秒吞吐量达到75.59个查询,该数据集的功率耗散为12.83倍,比常规CPU和GPU和GPU更快,更快的10.43 x和10.43 x和24.33 x - 基于基于的服务器平台。借助多稳定的存储和自定义加速能力,我们相信所提出的计算存储平台是针对成本敏感的云数据中心的有前途的解决方案。
translated by 谷歌翻译