Segblocks通过根据图像区域的复杂性动态调整处理分辨率来降低现有神经网络的计算成本。我们的方法将图像拆分为低复杂性的块和尺寸块块,从而减少了操作数量和内存消耗的数量。轻量级的政策网络选择复杂区域,是使用强化学习训练的。此外,我们介绍了CUDA中实现的几个模块以处理块中的图像。最重要的是,我们的新颖的阻止模块可以防止现有方法遭受的块边界的特征不连续性,同时保持记忆消耗受到控制。我们对语义分割的城市景观,Camvid和Mapillary Vistas数据集进行的实验表明,与具有相似复杂性的静态基准相比,动态处理图像与复杂性的折衷相对于复杂性更高。例如,我们的方法将SwiftNet-RN18的浮点操作数量降低了60%,并将推理速度提高50%,而CityScapes的MIOU准确性仅降低0.3%。
translated by 谷歌翻译
在本文中,我们提出了区块拷贝,该方案与标准的逐帧处理相比,可以加速基于框架的CNN以更有效地处理视频。为此,轻巧的策略网络确定图像中的重要区域,并且仅使用自定义的块 - 帕斯斯卷积应用于选定区域。简单地从前一个帧复制了非选择区域的特征,从而减少了计算和延迟的数量。执行策略是通过在线方式使用强化学习培训的,而无需进行地面真相注释。我们的通用框架在密集的预测任务上进行了证明,例如人行人检测,实例分割和语义分割,同时使用最新技术(中心和比例预测指标,MGAN,MGAN,SWIFTNET)和标准基线网络(Mask-RCNN,DeepLabV3+)。区块拷贝可实现大量的拖放节省和推理速度,对准确性的影响最小。
translated by 谷歌翻译
现代卷积神经网络对图像中的每个像素应用相同的操作。但是,并非所有图像区域都同样重要。为了解决此效率低下,我们提出了一种动态应用在输入图像条件下的卷积的方法。我们引入了一个残留的块,其中一个小的门控分支学会了应评估哪些空间位置。这些离散的门控决策是使用Gumbel-Softmax技巧端到端训练的,结合了稀疏标准。我们对CIFAR,ImageNet和MPII的实验表明,与现有方法相比,我们的方法更好地关注感兴趣的区域和更好的准确性,并且在较低的计算复杂性下。此外,我们使用聚集筛选方法为我们的动态卷积提供了有效的CUDA实施,从而通过MobileNETV2残留块实现了推理速度的显着提高。根据人类姿势估计,一项固有的空间稀疏任务,处理速度增加了60%,而准确性没有损失。
translated by 谷歌翻译
语义分割是将类标签分配给图像中每个像素的问题,并且是自动车辆视觉堆栈的重要组成部分,可促进场景的理解和对象检测。但是,许多表现最高的语义分割模型非常复杂且笨拙,因此不适合在计算资源有限且低延迟操作的板载自动驾驶汽车平台上部署。在这项调查中,我们彻底研究了旨在通过更紧凑,更有效的模型来解决这种未对准的作品,该模型能够在低内存嵌入式系统上部署,同时满足实时推理的限制。我们讨论了该领域中最杰出的作品,根据其主要贡献将它们置于分类法中,最后我们评估了在一致的硬件和软件设置下,所讨论模型的推理速度,这些模型代表了具有高端的典型研究环境GPU和使用低内存嵌入式GPU硬件的现实部署方案。我们的实验结果表明,许多作品能够在资源受限的硬件上实时性能,同时说明延迟和准确性之间的一致权衡。
translated by 谷歌翻译
语义分割是自主车辆了解周围场景的关键技术。当代模型的吸引力表现通常以牺牲重计算和冗长的推理时间为代价,这对于自行车来说是无法忍受的。在低分辨率图像上使用轻量级架构(编码器 - 解码器或双路)或推理,最近的方法实现了非常快的场景解析,即使在单个1080TI GPU上以100多件FPS运行。然而,这些实时方法与基于扩张骨架的模型之间的性能仍有显着差距。为了解决这个问题,我们提出了一家专门为实时语义细分设计的高效底座。所提出的深层双分辨率网络(DDRNET)由两个深部分支组成,之间进行多个双边融合。此外,我们设计了一个名为Deep聚合金字塔池(DAPPM)的新上下文信息提取器,以基于低分辨率特征映射放大有效的接收字段和熔丝多尺度上下文。我们的方法在城市景观和Camvid数据集上的准确性和速度之间实现了新的最先进的权衡。特别是,在单一的2080Ti GPU上,DDRNET-23-Slim在Camvid测试组上的Citycapes试验组102 FPS上的102 FPS,74.7%Miou。通过广泛使用的测试增强,我们的方法优于最先进的模型,需要计算得多。 CODES和培训的型号在线提供。
translated by 谷歌翻译
现代的高性能语义分割方法采用沉重的主链和扩张的卷积来提取相关特征。尽管使用上下文和语义信息提取功能对于分割任务至关重要,但它为实时应用程序带来了内存足迹和高计算成本。本文提出了一种新模型,以实现实时道路场景语义细分的准确性/速度之间的权衡。具体来说,我们提出了一个名为“比例吸引的条带引导特征金字塔网络”(s \ textsuperscript {2} -fpn)的轻巧模型。我们的网络由三个主要模块组成:注意金字塔融合(APF)模块,比例吸引条带注意模块(SSAM)和全局特征Upsample(GFU)模块。 APF采用了注意力机制来学习判别性多尺度特征,并有助于缩小不同级别之间的语义差距。 APF使用量表感知的关注来用垂直剥离操作编码全局上下文,并建模长期依赖性,这有助于将像素与类似的语义标签相关联。此外,APF还采用频道重新加权块(CRB)来强调频道功能。最后,S \ TextSuperScript {2} -fpn的解码器然后采用GFU,该GFU用于融合APF和编码器的功能。已经对两个具有挑战性的语义分割基准进行了广泛的实验,这表明我们的方法通过不同的模型设置实现了更好的准确性/速度权衡。提出的模型已在CityScapes Dataset上实现了76.2 \%miou/87.3fps,77.4 \%miou/67fps和77.8 \%miou/30.5fps,以及69.6 \%miou,71.0 miou,71.0 \%miou,和74.2 \%\%\%\%\%\%。 miou在Camvid数据集上。这项工作的代码将在\ url {https://github.com/mohamedac29/s2-fpn提供。
translated by 谷歌翻译
在本文中,我们专注于探索有效的方法,以更快,准确和域的不可知性语义分割。受到相邻视频帧之间运动对齐的光流的启发,我们提出了一个流对齐模块(FAM),以了解相邻级别的特征映射之间的\ textit {语义流},并将高级特征广播到高分辨率特征有效地,有效地有效。 。此外,将我们的FAM与共同特征的金字塔结构集成在一起,甚至在轻量重量骨干网络(例如Resnet-18和DFNET)上也表现出优于其他实时方法的性能。然后,为了进一步加快推理过程,我们还提出了一个新型的封闭式双流对齐模块,以直接对齐高分辨率特征图和低分辨率特征图,在该图中我们将改进版本网络称为SFNET-LITE。广泛的实验是在几个具有挑战性的数据集上进行的,结果显示了SFNET和SFNET-LITE的有效性。特别是,建议的SFNET-LITE系列在使用RESNET-18主链和78.8 MIOU以120 fps运行的情况下,使用RTX-3090上的STDC主链在120 fps运行时,在60 fps运行时达到80.1 miou。此外,我们将四个具有挑战性的驾驶数据集(即CityScapes,Mapillary,IDD和BDD)统一到一个大数据集中,我们将其命名为Unified Drive细分(UDS)数据集。它包含不同的域和样式信息。我们基准了UDS上的几项代表性作品。 SFNET和SFNET-LITE仍然可以在UDS上取得最佳的速度和准确性权衡,这在如此新的挑战性环境中是强大的基准。所有代码和模型均可在https://github.com/lxtgh/sfsegnets上公开获得。
translated by 谷歌翻译
Semantic segmentation is a challenging task that addresses most of the perception needs of Intelligent Vehicles (IV) in an unified way. Deep Neural Networks excel at this task, as they can be trained end-to-end to accurately classify multiple object categories in an image at pixel level. However, a good trade-off between high quality and computational resources is yet not present in state-of-the-art semantic segmentation approaches, limiting their application in real vehicles. In this paper, we propose a deep architecture that is able to run in real-time while providing accurate semantic segmentation. The core of our architecture is a novel layer that uses residual connections and factorized convolutions in order to remain efficient while retaining remarkable accuracy. Our approach is able to run at over 83 FPS in a single Titan X, and 7 FPS in a Jetson TX1 (embedded GPU). A comprehensive set of experiments on the publicly available Cityscapes dataset demonstrates that our system achieves an accuracy that is similar to the state of the art, while being orders of magnitude faster to compute than other architectures that achieve top precision. The resulting trade-off makes our model an ideal approach for scene understanding in IV applications. The code is publicly available at: https://github.com/Eromera/erfnet
translated by 谷歌翻译
We focus on the challenging task of real-time semantic segmentation in this paper. It finds many practical applications and yet is with fundamental difficulty of reducing a large portion of computation for pixel-wise label inference. We propose an image cascade network (ICNet) that incorporates multi-resolution branches under proper label guidance to address this challenge. We provide in-depth analysis of our framework and introduce the cascade feature fusion unit to quickly achieve highquality segmentation. Our system yields real-time inference on a single GPU card with decent quality results evaluated on challenging datasets like Cityscapes, CamVid and COCO-Stuff.
translated by 谷歌翻译
人们普遍认为,对于准确的语义细分,必须使用昂贵的操作(例如,非常卷积)结合使用昂贵的操作(例如非常卷积),从而导致缓慢的速度和大量的内存使用。在本文中,我们质疑这种信念,并证明既不需要高度的内部决议也不是必需的卷积。我们的直觉是,尽管分割是一个每像素的密集预测任务,但每个像素的语义通常都取决于附近的邻居和遥远的环境。因此,更强大的多尺度功能融合网络起着至关重要的作用。在此直觉之后,我们重新访问常规的多尺度特征空间(通常限制为P5),并将其扩展到更丰富的空间,最小的P9,其中最小的功能仅为输入大小的1/512,因此具有很大的功能接受场。为了处理如此丰富的功能空间,我们利用最近的BIFPN融合了多尺度功能。基于这些见解,我们开发了一个简化的分割模型,称为ESEG,该模型既没有内部分辨率高,也没有昂贵的严重卷积。也许令人惊讶的是,与多个数据集相比,我们的简单方法可以以比以前的艺术更快地实现更高的准确性。在实时设置中,ESEG-Lite-S在189 fps的CityScapes [12]上达到76.0%MIOU,表现优于更快的[9](73.1%MIOU时为170 fps)。我们的ESEG-LITE-L以79 fps的速度运行,达到80.1%MIOU,在很大程度上缩小了实时和高性能分割模型之间的差距。
translated by 谷歌翻译
Semantic segmentation works on the computer vision algorithm for assigning each pixel of an image into a class. The task of semantic segmentation should be performed with both accuracy and efficiency. Most of the existing deep FCNs yield to heavy computations and these networks are very power hungry, unsuitable for real-time applications on portable devices. This project analyzes current semantic segmentation models to explore the feasibility of applying these models for emergency response during catastrophic events. We compare the performance of real-time semantic segmentation models with non-real-time counterparts constrained by aerial images under oppositional settings. Furthermore, we train several models on the Flood-Net dataset, containing UAV images captured after Hurricane Harvey, and benchmark their execution on special classes such as flooded buildings vs. non-flooded buildings or flooded roads vs. non-flooded roads. In this project, we developed a real-time UNet based model and deployed that network on Jetson AGX Xavier module.
translated by 谷歌翻译
准确的语义分割模型通常需要大量的计算资源,从而抑制其在实际应用中的使用。最近的作品依靠精心制作的轻质模型来快速推断。但是,这些模型不能灵活地适应不同的准确性和效率要求。在本文中,我们提出了一种简单但有效的微小语义细分(SLIMSEG)方法,该方法可以在推理期间以不同的能力执行,具体取决于所需的准确性效率 - 折衷。更具体地说,我们在训练过程中采用逐步向下知识蒸馏采用参数化通道。观察到每个子模型的分割结果之间的差异主要在语义边界附近,我们引入了额外的边界指导语义分割损失,以进一步提高每个子模型的性能。我们表明,我们提出的具有各种主流网络的Slimseg可以产生灵活的模型,从而使计算成本的动态调整和比独立模型更好。关于语义分割基准,城市景观和Camvid的广泛实验证明了我们框架的概括能力。
translated by 谷歌翻译
我们展示了一个下一代神经网络架构,马赛克,用于移动设备上的高效和准确的语义图像分割。MOSAIC是通过各种移动硬件平台使用常用的神经操作设计,以灵活地部署各种移动平台。利用简单的非对称编码器 - 解码器结构,该解码器结构由有效的多尺度上下文编码器和轻量级混合解码器组成,以从聚合信息中恢复空间细节,Mosaic在平衡准确度和计算成本的同时实现了新的最先进的性能。基于搜索的分类网络,马赛克部署在定制的特征提取骨架顶部,达到目前行业标准MLPerf型号和最先进的架构,达到5%的绝对精度增益。
translated by 谷歌翻译
多尺度学习框架已被视为一种能够提高语义分割的能力类别。然而,这个问题并不是微不足道的,尤其是对于现实世界的部署,通常需要高效率推理潜伏期。在本文中,我们彻底分析了卷积块的设计(卷积的类型和卷积中的频道数量),以及跨多个尺度的相互作用方式,所有这些都是从轻量级的语义分割的角度来看。通过这样的深入比较,我们综述了三个原则,因此设计了轻巧且逐渐估计的网络(LPS-NET),这些网络以贪婪的方式在新颖地扩展了网络复杂性。从技术上讲,LPS-NET首先利用了建立小型网络的原则。然后,LPS-NET通过扩展单个维度(卷积块的数量,通道数量或输入分辨率)来逐步扩展到较大网络,以实现最佳的速度/准确性交易。在三个数据集上进行的广泛实验始终证明了LPS-NET优于几种有效的语义分割方法。更值得注意的是,我们的LPS-NET在CityScapes测试套装上达到73.4%MIOU,NVIDIA GTX 1080TI的速度为413.5fps,导致绩效提高1.5%,对抗最高的速度为65% - ART STDC。代码可在\ url {https://github.com/yihengzhang-cv/lps-net}中获得。
translated by 谷歌翻译
Real-time semantic segmentation has played an important role in intelligent vehicle scenarios. Recently, numerous networks have incorporated information from multi-size receptive fields to facilitate feature extraction in real-time semantic segmentation tasks. However, these methods preferentially adopt massive receptive fields to elicit more contextual information, which may result in inefficient feature extraction. We believe that the elaborated receptive fields are crucial, considering the demand for efficient feature extraction in real-time tasks. Therefore, we propose an effective and efficient architecture termed Dilation-wise Residual segmentation (DWRSeg), which possesses different sets of receptive field sizes within different stages. The architecture involves (i) a Dilation-wise Residual (DWR) module for extracting features based on different scales of receptive fields in the high level of the network; (ii) a Simple Inverted Residual (SIR) module that uses an inverted bottleneck structure to extract features from the low stage; and (iii) a simple fully convolutional network (FCN)-like decoder for aggregating multiscale feature maps to generate the prediction. Extensive experiments on the Cityscapes and CamVid datasets demonstrate the effectiveness of our method by achieving a state-of-the-art trade-off between accuracy and inference speed, in addition to being lighter weight. Without using pretraining or resorting to any training trick, we achieve 72.7% mIoU on the Cityscapes test set at a speed of 319.5 FPS on one NVIDIA GeForce GTX 1080 Ti card, which is significantly faster than existing methods. The code and trained models are publicly available.
translated by 谷歌翻译
两个分支网络体系结构显示了其对实时语义分割任务的效率和有效性。但是,低水平细节和高级语义的直接融合将导致一种现象,即周围的上下文信息很容易被详细特征淹没,即本文中的超声波,这限制了现有的两种分支模型的准确性的提高。在本文中,我们桥接了卷积神经网络(CNN)与比例综合衍生物(PID)控制器之间的联系,并揭示了两个分支网络不过是一个比例综合(PI)控制器,它固有地来自于此。类似的过冲问题。为了减轻这个问题,我们提出了一个新颖的三个分支网络架构:Pidnet,它分别拥有三个分支来分析详细的,上下文和边界信息(语义的导数),并采用边界关注来指导详细和背景的融合在最后阶段的分支。 PIDNET家族在推理速度和准确性之间实现了最佳的权衡,其测试准确性超过了所有存在的模型,这些模型在CityScapes,Camvid和Coco-STUFF数据集上具有相似的推理速度。尤其是,Pidnet-S在CityScapes测试套装上以93.2 fps的推理速度达到78.6%,在CAMVID测试集上速度为153.7 fps,速度为80.1%。
translated by 谷歌翻译
现代设备(例如智能手机,卫星和医疗设备)中的摄像机能够捕获非常高分辨率的图像和视频。这种高分辨率数据通常需要通过深度学习模型来处理癌症检测,自动化道路导航,天气预测,监视,优化农业过程和许多其他应用。使用高分辨率的图像和视频作为深度学习模型的直接输入,由于其参数数量大,计算成本,推理延迟和GPU内存消耗而造成了许多挑战。简单的方法(例如将图像调整为较低的分辨率大小)在文献中很常见,但是它们通常会显着降低准确性。文献中的几项作品提出了更好的替代方案,以应对高分辨率数据的挑战并提高准确性和速度,同时遵守硬件限制和时间限制。这项调查描述了这种高效的高分辨率深度学习方法,总结了高分辨率深度学习的现实应用程序,并提供了有关可用高分辨率数据集的全面信息。
translated by 谷歌翻译
语义分割的最新进步通常在其在快速增加视野之后使用特殊的上下文模块来调整想象成掠夺骨干网。虽然成功,骨干,其中大部分计算谎言,但没有足够的足够大的视野来制定最佳决策。最近的进步通过快速下采样在骨干中采样分辨率来解决这个问题,同时还具有具有更高分辨率的一个或多个平行分支。我们通过设计resnext启发块结构来采用不同的方法,该结构使用具有不同扩张速率的两个平行的3x3卷积层,以增加视野,同时保留本地细节。通过在骨干中重复此块结构,我们不需要在它之后追加任何特殊的上下文模块。此外,我们提出了一种轻量级解码器,它比常见的替代方案更好地恢复本地信息。为了展示我们方法的有效性,我们的Model Regseg在实时城市景观和Camvid数据集上实现了最先进的结果。使用T4 GPU具有混合精度,Regseg达到78.3 Miou在Citycapes测试设置为30 FPS的测试,而80.9 miou在70 fps上设定的Camvid测试,两者都没有想象的预制。
translated by 谷歌翻译
视觉变形金刚(VITS)引起了对计算机视觉任务的卓越性能的关注。为解决单级低分辨率表示的限制,先前的工作适用于具有分层体系结构的高分辨率密集预测任务,以生成金字塔功能。然而,考虑到其分类的顺序拓扑,仍然对VITS探索多种表达学习。在这项工作中提高具有更多能力的VITS来学习语义和空间精确的多尺度表示,我们展示了高分辨率多分支架构的高分辨率多分支架构,带有视觉变压器,称为HRVIT,推动静脉前沿预测任务到新级别。我们探索异构分支设计,降低线性层中的冗余,并增加模型非线性以平衡模型性能和硬件效率。拟议的HRVIT在ADE20K上达到50.20%的Miou,83.16%Miou,用于语义细分任务,超过最先进的麻省理工学院和克斯犬,平均+1.78 miou改善,参数减少28%和21%拖鞋,展示HRVIT作为强大视力骨架的潜力。
translated by 谷歌翻译
为了实现不断增长的准确性,通常会开发大型和复杂的神经网络。这样的模型需要高度的计算资源,因此不能在边缘设备上部署。由于它们在几个应用领域的有用性,建立资源有效的通用网络非常感兴趣。在这项工作中,我们努力有效地结合了CNN和变压器模型的优势,并提出了一种新的有效混合体系结构。特别是在EDGENEXT中,我们引入了分裂深度转置注意力(SDTA)编码器,该编码器将输入张量分解为多个通道组,并利用深度旋转以及跨通道维度的自我注意力,以隐含地增加接受场并编码多尺度特征。我们在分类,检测和分割任务上进行的广泛实验揭示了所提出的方法的优点,优于相对较低的计算要求的最先进方法。我们具有130万参数的EDGENEXT模型在Imagenet-1k上达到71.2 \%TOP-1的精度,超过移动设备的绝对增益为2.2 \%,而拖鞋减少了28 \%。此外,我们具有560万参数的EDGENEXT模型在Imagenet-1k上达到了79.4 \%TOP-1的精度。代码和模型可在https://t.ly/_vu9上公开获得。
translated by 谷歌翻译