在本文中,我们专注于探索有效的方法,以更快,准确和域的不可知性语义分割。受到相邻视频帧之间运动对齐的光流的启发,我们提出了一个流对齐模块(FAM),以了解相邻级别的特征映射之间的\ textit {语义流},并将高级特征广播到高分辨率特征有效地,有效地有效。 。此外,将我们的FAM与共同特征的金字塔结构集成在一起,甚至在轻量重量骨干网络(例如Resnet-18和DFNET)上也表现出优于其他实时方法的性能。然后,为了进一步加快推理过程,我们还提出了一个新型的封闭式双流对齐模块,以直接对齐高分辨率特征图和低分辨率特征图,在该图中我们将改进版本网络称为SFNET-LITE。广泛的实验是在几个具有挑战性的数据集上进行的,结果显示了SFNET和SFNET-LITE的有效性。特别是,建议的SFNET-LITE系列在使用RESNET-18主链和78.8 MIOU以120 fps运行的情况下,使用RTX-3090上的STDC主链在120 fps运行时,在60 fps运行时达到80.1 miou。此外,我们将四个具有挑战性的驾驶数据集(即CityScapes,Mapillary,IDD和BDD)统一到一个大数据集中,我们将其命名为Unified Drive细分(UDS)数据集。它包含不同的域和样式信息。我们基准了UDS上的几项代表性作品。 SFNET和SFNET-LITE仍然可以在UDS上取得最佳的速度和准确性权衡,这在如此新的挑战性环境中是强大的基准。所有代码和模型均可在https://github.com/lxtgh/sfsegnets上公开获得。
translated by 谷歌翻译
语义分割是自主车辆了解周围场景的关键技术。当代模型的吸引力表现通常以牺牲重计算和冗长的推理时间为代价,这对于自行车来说是无法忍受的。在低分辨率图像上使用轻量级架构(编码器 - 解码器或双路)或推理,最近的方法实现了非常快的场景解析,即使在单个1080TI GPU上以100多件FPS运行。然而,这些实时方法与基于扩张骨架的模型之间的性能仍有显着差距。为了解决这个问题,我们提出了一家专门为实时语义细分设计的高效底座。所提出的深层双分辨率网络(DDRNET)由两个深部分支组成,之间进行多个双边融合。此外,我们设计了一个名为Deep聚合金字塔池(DAPPM)的新上下文信息提取器,以基于低分辨率特征映射放大有效的接收字段和熔丝多尺度上下文。我们的方法在城市景观和Camvid数据集上的准确性和速度之间实现了新的最先进的权衡。特别是,在单一的2080Ti GPU上,DDRNET-23-Slim在Camvid测试组上的Citycapes试验组102 FPS上的102 FPS,74.7%Miou。通过广泛使用的测试增强,我们的方法优于最先进的模型,需要计算得多。 CODES和培训的型号在线提供。
translated by 谷歌翻译
现代的高性能语义分割方法采用沉重的主链和扩张的卷积来提取相关特征。尽管使用上下文和语义信息提取功能对于分割任务至关重要,但它为实时应用程序带来了内存足迹和高计算成本。本文提出了一种新模型,以实现实时道路场景语义细分的准确性/速度之间的权衡。具体来说,我们提出了一个名为“比例吸引的条带引导特征金字塔网络”(s \ textsuperscript {2} -fpn)的轻巧模型。我们的网络由三个主要模块组成:注意金字塔融合(APF)模块,比例吸引条带注意模块(SSAM)和全局特征Upsample(GFU)模块。 APF采用了注意力机制来学习判别性多尺度特征,并有助于缩小不同级别之间的语义差距。 APF使用量表感知的关注来用垂直剥离操作编码全局上下文,并建模长期依赖性,这有助于将像素与类似的语义标签相关联。此外,APF还采用频道重新加权块(CRB)来强调频道功能。最后,S \ TextSuperScript {2} -fpn的解码器然后采用GFU,该GFU用于融合APF和编码器的功能。已经对两个具有挑战性的语义分割基准进行了广泛的实验,这表明我们的方法通过不同的模型设置实现了更好的准确性/速度权衡。提出的模型已在CityScapes Dataset上实现了76.2 \%miou/87.3fps,77.4 \%miou/67fps和77.8 \%miou/30.5fps,以及69.6 \%miou,71.0 miou,71.0 \%miou,和74.2 \%\%\%\%\%\%。 miou在Camvid数据集上。这项工作的代码将在\ url {https://github.com/mohamedac29/s2-fpn提供。
translated by 谷歌翻译
人们普遍认为,对于准确的语义细分,必须使用昂贵的操作(例如,非常卷积)结合使用昂贵的操作(例如非常卷积),从而导致缓慢的速度和大量的内存使用。在本文中,我们质疑这种信念,并证明既不需要高度的内部决议也不是必需的卷积。我们的直觉是,尽管分割是一个每像素的密集预测任务,但每个像素的语义通常都取决于附近的邻居和遥远的环境。因此,更强大的多尺度功能融合网络起着至关重要的作用。在此直觉之后,我们重新访问常规的多尺度特征空间(通常限制为P5),并将其扩展到更丰富的空间,最小的P9,其中最小的功能仅为输入大小的1/512,因此具有很大的功能接受场。为了处理如此丰富的功能空间,我们利用最近的BIFPN融合了多尺度功能。基于这些见解,我们开发了一个简化的分割模型,称为ESEG,该模型既没有内部分辨率高,也没有昂贵的严重卷积。也许令人惊讶的是,与多个数据集相比,我们的简单方法可以以比以前的艺术更快地实现更高的准确性。在实时设置中,ESEG-Lite-S在189 fps的CityScapes [12]上达到76.0%MIOU,表现优于更快的[9](73.1%MIOU时为170 fps)。我们的ESEG-LITE-L以79 fps的速度运行,达到80.1%MIOU,在很大程度上缩小了实时和高性能分割模型之间的差距。
translated by 谷歌翻译
在语义细分中,将高级上下文信息与低级详细信息集成至关重要。为此,大多数现有的分割模型都采用双线性启动采样和卷积来具有不同尺度的地图,然后以相同的分辨率对齐。但是,双线性启动采样模糊了这些特征地图和卷积中所学到的精确信息,这会产生额外的计算成本。为了解决这些问题,我们提出了隐式特征对齐函数(IFA)。我们的方法的灵感来自隐式神经表示的快速扩展的主题,在该主题中,基于坐标的神经网络用于指定信号字段。在IFA中,特征向量被视为表示2D信息字段。给定查询坐标,附近的具有相对坐标的特征向量是从多级特征图中获取的,然后馈入MLP以生成相应的输出。因此,IFA隐含地将特征图在不同级别对齐,并能够在任意分辨率中产生分割图。我们证明了IFA在多个数据集上的功效,包括CityScapes,Pascal环境和ADE20K。我们的方法可以与各种体系结构的改进结合使用,并在共同基准上实现最新的计算准确性权衡。代码将在https://github.com/hzhupku/ifa上提供。
translated by 谷歌翻译
Panoptic Part Segmentation (PPS) unifies panoptic segmentation and part segmentation into one task. Previous works utilize separated approaches to handle thing, stuff, and part predictions without shared computation and task association. We aim to unify these tasks at the architectural level, designing the first end-to-end unified framework named Panoptic-PartFormer. Moreover, we find the previous metric PartPQ biases to PQ. To handle both issues, we make the following contributions: Firstly, we design a meta-architecture that decouples part feature and things/stuff feature, respectively. We model things, stuff, and parts as object queries and directly learn to optimize all three forms of prediction as a unified mask prediction and classification problem. We term our model as Panoptic-PartFormer. Secondly, we propose a new metric Part-Whole Quality (PWQ) to better measure such task from both pixel-region and part-whole perspectives. It can also decouple the error for part segmentation and panoptic segmentation. Thirdly, inspired by Mask2Former, based on our meta-architecture, we propose Panoptic-PartFormer++ and design a new part-whole cross attention scheme to further boost part segmentation qualities. We design a new part-whole interaction method using masked cross attention. Finally, the extensive ablation studies and analysis demonstrate the effectiveness of both Panoptic-PartFormer and Panoptic-PartFormer++. Compared with previous Panoptic-PartFormer, our Panoptic-PartFormer++ achieves 2% PartPQ and 3% PWQ improvements on the Cityscapes PPS dataset and 5% PartPQ on the Pascal Context PPS dataset. On both datasets, Panoptic-PartFormer++ achieves new state-of-the-art results with a significant cost drop of 70% on GFlops and 50% on parameters. Our models can serve as a strong baseline and aid future research in PPS. Code will be available.
translated by 谷歌翻译
两个分支网络体系结构显示了其对实时语义分割任务的效率和有效性。但是,低水平细节和高级语义的直接融合将导致一种现象,即周围的上下文信息很容易被详细特征淹没,即本文中的超声波,这限制了现有的两种分支模型的准确性的提高。在本文中,我们桥接了卷积神经网络(CNN)与比例综合衍生物(PID)控制器之间的联系,并揭示了两个分支网络不过是一个比例综合(PI)控制器,它固有地来自于此。类似的过冲问题。为了减轻这个问题,我们提出了一个新颖的三个分支网络架构:Pidnet,它分别拥有三个分支来分析详细的,上下文和边界信息(语义的导数),并采用边界关注来指导详细和背景的融合在最后阶段的分支。 PIDNET家族在推理速度和准确性之间实现了最佳的权衡,其测试准确性超过了所有存在的模型,这些模型在CityScapes,Camvid和Coco-STUFF数据集上具有相似的推理速度。尤其是,Pidnet-S在CityScapes测试套装上以93.2 fps的推理速度达到78.6%,在CAMVID测试集上速度为153.7 fps,速度为80.1%。
translated by 谷歌翻译
视频实例分割(VIS)是一个新的固有多任务问题,旨在在视频序列中检测,细分和跟踪每个实例。现有方法主要基于单帧功能或多个帧的单尺度功能,其中忽略了时间信息或多尺度信息。为了结合时间和比例信息,我们提出了一种时间金字塔路由(TPR)策略,以从两个相邻帧的特征金字塔对有条件地对齐和进行像素级聚集。具体而言,TPR包含两个新的组件,包括动态对齐细胞路由(DACR)和交叉金字塔路由(CPR),其中DACR设计用于跨时间维度对齐和门控金字塔特征,而CPR则在跨音阶范围内暂时汇总的特征。此外,我们的方法是轻巧和插件模块,可以轻松地应用于现有的实例分割方法。在包括YouTube-Vis(2019,2021)和CityScapes-VP在内的三个数据集上进行的广泛实验证明了拟议方法对几种最先进的视频实例和全盘细分方法的有效性和效率。代码将在\ url {https://github.com/lxtgh/temporalpyramidrouting}上公开获得。
translated by 谷歌翻译
全景部分分割(PPS)旨在将泛型分割和部分分割统一为一个任务。先前的工作主要利用分离的方法来处理事物,物品和部分预测,而无需执行任何共享的计算和任务关联。在这项工作中,我们旨在将这些任务统一在架构层面上,设计第一个名为Panoptic-Partformer的端到端统一方法。特别是,由于视觉变压器的最新进展,我们将事物,内容和部分建模为对象查询,并直接学会优化所有三个预测作为统一掩码的预测和分类问题。我们设计了一个脱钩的解码器,以分别生成零件功能和事物/东西功能。然后,我们建议利用所有查询和相应的特征共同执行推理。最终掩码可以通过查询和相应特征之间的内部产品获得。广泛的消融研究和分析证明了我们框架的有效性。我们的全景局势群体在CityScapes PPS和Pascal Context PPS数据集上实现了新的最新结果,至少有70%的GFLOPS和50%的参数降低。特别是,在Pascal上下文PPS数据集上采用SWIN Transformer后,我们可以通过RESNET50骨干链和10%的改进获得3.4%的相对改进。据我们所知,我们是第一个通过\ textit {统一和端到端变压器模型来解决PPS问题的人。鉴于其有效性和概念上的简单性,我们希望我们的全景贡献者能够充当良好的基准,并帮助未来的PPS统一研究。我们的代码和型号可在https://github.com/lxtgh/panoptic-partformer上找到。
translated by 谷歌翻译
Real-time semantic segmentation has played an important role in intelligent vehicle scenarios. Recently, numerous networks have incorporated information from multi-size receptive fields to facilitate feature extraction in real-time semantic segmentation tasks. However, these methods preferentially adopt massive receptive fields to elicit more contextual information, which may result in inefficient feature extraction. We believe that the elaborated receptive fields are crucial, considering the demand for efficient feature extraction in real-time tasks. Therefore, we propose an effective and efficient architecture termed Dilation-wise Residual segmentation (DWRSeg), which possesses different sets of receptive field sizes within different stages. The architecture involves (i) a Dilation-wise Residual (DWR) module for extracting features based on different scales of receptive fields in the high level of the network; (ii) a Simple Inverted Residual (SIR) module that uses an inverted bottleneck structure to extract features from the low stage; and (iii) a simple fully convolutional network (FCN)-like decoder for aggregating multiscale feature maps to generate the prediction. Extensive experiments on the Cityscapes and CamVid datasets demonstrate the effectiveness of our method by achieving a state-of-the-art trade-off between accuracy and inference speed, in addition to being lighter weight. Without using pretraining or resorting to any training trick, we achieve 72.7% mIoU on the Cityscapes test set at a speed of 319.5 FPS on one NVIDIA GeForce GTX 1080 Ti card, which is significantly faster than existing methods. The code and trained models are publicly available.
translated by 谷歌翻译
本文提出了一种用于对象和场景的高质量图像分割的新方法。灵感来自于形态学图像处理技术中的扩张和侵蚀操作,像素级图像分割问题被视为挤压对象边界。从这个角度来看,提出了一种新颖且有效的\ textBF {边界挤压}模块。该模块用于从内侧和外侧方向挤压对象边界,这有助于精确掩模表示。提出了双向基于流的翘曲过程来产生这种挤压特征表示,并且设计了两个特定的损耗信号以监控挤压过程。边界挤压模块可以通过构建一些现有方法构建作为即插即用模块,可以轻松应用于实例和语义分段任务。此外,所提出的模块是重量的,因此具有实际使用的潜力。实验结果表明,我们简单但有效的设计可以在几个不同的数据集中产生高质量的结果。此外,边界上的其他几个指标用于证明我们对以前的工作中的方法的有效性。我们的方法对实例和语义分割的具有利于Coco和CityCapes数据集来产生重大改进,并且在相同的设置下以前的最先进的速度优于先前的最先进的速度。代码和模型将在\ url {https:/github.com/lxtgh/bsseg}发布。
translated by 谷歌翻译
像窗户,瓶子和镜子等玻璃状物体在现实世界中存在广泛存在。感应这些对象有许多应用,包括机器人导航和抓握。然而,由于玻璃样物体背后的任意场景,这项任务非常具有挑战性。本文旨在通过增强的边界学习解决玻璃状物体分割问题。特别是,我们首先提出了一种新的精致差分模块,其输出更精细的边界线索。然后,我们介绍了一个边缘感知点的图形卷积网络模块,以沿边界模拟全局形状。我们使用这两个模块来设计解码器,该解码器产生准确和干净的分段结果,尤其是在对象轮廓上。两个模块都是重量轻且有效的:它们可以嵌入到各种分段模型中。在最近的三个玻璃状物体分割数据集上进行了广泛的实验,包括Trans10K,MSD和GDD,我们的方法建立了新的最先进的结果。我们还说明了我们在三个通用分段数据集中的方法的强大泛化属性,包括城市景观,BDD和Coco Sift。代码和模型可用于\ url {https:/github.com/hehao13/ebrnet}。
translated by 谷歌翻译
共同出现的视觉模式使上下文聚集成为语义分割的重要范式。现有的研究重点是建模图像中的上下文,同时忽略图像以下相应类别的有价值的语义。为此,我们提出了一个新颖的软采矿上下文信息,超出了名为McIbi ++的图像范式,以进一步提高像素级表示。具体来说,我们首先设置了动态更新的内存模块,以存储各种类别的数据集级别的分布信息,然后利用信息在网络转发过程中产生数据集级别类别表示。之后,我们为每个像素表示形式生成一个类概率分布,并以类概率分布作为权重进行数据集级上下文聚合。最后,使用汇总的数据集级别和传统的图像级上下文信息来增强原始像素表示。此外,在推论阶段,我们还设计了一种粗到最新的迭代推理策略,以进一步提高分割结果。 MCIBI ++可以轻松地纳入现有的分割框架中,并带来一致的性能改进。此外,MCIBI ++可以扩展到视频语义分割框架中,比基线进行了大量改进。配备MCIBI ++,我们在七个具有挑战性的图像或视频语义分段基准测试中实现了最先进的性能。
translated by 谷歌翻译
视觉表示学习是解决各种视力问题的关键。依靠开创性的网格结构先验,卷积神经网络(CNN)已成为大多数深视觉模型的事实上的标准架构。例如,经典的语义分割方法通常采用带有编码器编码器体系结构的完全横向卷积网络(FCN)。编码器逐渐减少了空间分辨率,并通过更大的接受场来学习更多抽象的视觉概念。由于上下文建模对于分割至关重要,因此最新的努力一直集中在通过扩张(即极度)卷积或插入注意力模块来增加接受场。但是,基于FCN的体系结构保持不变。在本文中,我们旨在通过将视觉表示学习作为序列到序列预测任务来提供替代观点。具体而言,我们部署纯变压器以将图像编码为一系列贴片,而无需局部卷积和分辨率减少。通过在变压器的每一层中建立的全球环境,可以学习更强大的视觉表示形式,以更好地解决视力任务。特别是,我们的细分模型(称为分割变压器(SETR))在ADE20K上擅长(50.28%MIOU,这是提交当天测试排行榜中的第一个位置),Pascal环境(55.83%MIOU),并在CityScapes上达到竞争成果。此外,我们制定了一个分层局部全球(HLG)变压器的家族,其特征是窗户内的本地关注和跨窗户的全球性专注于层次结构和金字塔架构。广泛的实验表明,我们的方法在各种视觉识别任务(例如,图像分类,对象检测和实例分割和语义分割)上实现了吸引力的性能。
translated by 谷歌翻译
We focus on the challenging task of real-time semantic segmentation in this paper. It finds many practical applications and yet is with fundamental difficulty of reducing a large portion of computation for pixel-wise label inference. We propose an image cascade network (ICNet) that incorporates multi-resolution branches under proper label guidance to address this challenge. We provide in-depth analysis of our framework and introduce the cascade feature fusion unit to quickly achieve highquality segmentation. Our system yields real-time inference on a single GPU card with decent quality results evaluated on challenging datasets like Cityscapes, CamVid and COCO-Stuff.
translated by 谷歌翻译
利用多尺度功能在解决语义细分问题方面表现出了巨大的潜力。聚集通常是用总和或串联(Concat)进行的,然后是卷积(Conv)层。但是,它将高级上下文完全通过了以下层次结构,而无需考虑它们的相互关系。在这项工作中,我们旨在启用低级功能,以通过跨尺度像素到区域关系操作从相邻的高级特征图中汇总互补上下文。我们利用跨尺度上下文的传播,即使高分辨率的低级特征也可以使远程依赖关系也可以捕获。为此,我们采用有效的功能金字塔网络来获得多尺度功能。我们提出了一个关系语义提取器(RSE)和关系语义传播器(RSP),分别用于上下文提取和传播。然后,我们将几个RSP堆叠到RSP头中,以实现上下文的渐进自上而下分布。两个具有挑战性的数据集和可可的实验结果表明,RSP头在语义细分和泛型分割方面都具有高效率的竞争性。在语义分割任务中,它的表现优于DeepLabv3 [1],而在语义分割任务中少75%(多重添加)。
translated by 谷歌翻译
Pastic分割结合了语义和实例细分的优势,可以为智能车辆提供像素级和实例级别的环境感知信息。但是,它挑战各种尺度的对象,尤其是在极小的和小的物体上。在这项工作中,我们提出了两个轻量级模块来减轻此问题。首先,Pixel-ReSation Block旨在为大规模事物建模全局上下文信息,该信息基于与查询无关的公式,并带来小参数增量。然后,构建对流网络以收集针对小规模内容的额外高分辨率信息,为下游分割分支提供更合适的语义功能。基于这两个模块,我们提出了一个端到端尺度意识到的统一网络(Sunet),该网络更适合多尺度对象。对城市景观和可可的广泛实验证明了所提出的方法的有效性。
translated by 谷歌翻译
语义分割是计算机视觉中的关键任务之一,它是为图像中的每个像素分配类别标签。尽管最近取得了重大进展,但大多数现有方法仍然遇到两个具有挑战性的问题:1)图像中的物体和东西的大小可能非常多样化,要求将多规模特征纳入完全卷积网络(FCN); 2)由于卷积网络的固有弱点,很难分类靠近物体/物体的边界的像素。为了解决第一个问题,我们提出了一个新的多受感受性现场模块(MRFM),明确考虑了多尺度功能。对于第二期,我们设计了一个边缘感知损失,可有效区分对象/物体的边界。通过这两种设计,我们的多种接收场网络在两个广泛使用的语义分割基准数据集上实现了新的最先进的结果。具体来说,我们在CityScapes数据集上实现了83.0的平均值,在Pascal VOC2012数据集中达到了88.4的平均值。
translated by 谷歌翻译
Semantic segmentation is a classic computer vision problem dedicated to labeling each pixel with its corresponding category. As a basic task for advanced tasks such as industrial quality inspection, remote sensing information extraction, medical diagnostic aid, and autonomous driving, semantic segmentation has been developed for a long time in combination with deep learning, and a lot of works have been accumulated. However, neither the classic FCN-based works nor the popular Transformer-based works have attained fine-grained localization of pixel labels, which remains the main challenge in this field. Recently, with the popularity of autonomous driving, the segmentation of road scenes has received increasing attention. Based on the cross-task consistency theory, we incorporate edge priors into semantic segmentation tasks to obtain better results. The main contribution is that we provide a model-agnostic method that improves the accuracy of semantic segmentation models with zero extra inference runtime overhead, verified on the datasets of road and non-road scenes. From our experimental results, our method can effectively improve semantic segmentation accuracy.
translated by 谷歌翻译
Most recent semantic segmentation methods adopt a fully-convolutional network (FCN) with an encoderdecoder architecture. The encoder progressively reduces the spatial resolution and learns more abstract/semantic visual concepts with larger receptive fields. Since context modeling is critical for segmentation, the latest efforts have been focused on increasing the receptive field, through either dilated/atrous convolutions or inserting attention modules. However, the encoder-decoder based FCN architecture remains unchanged. In this paper, we aim to provide an alternative perspective by treating semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer (i.e., without convolution and resolution reduction) to encode an image as a sequence of patches. With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR). Extensive experiments show that SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes. Particularly, we achieve the first position in the highly competitive ADE20K test server leaderboard on the day of submission.
translated by 谷歌翻译