知识丰富的语言代表学习在各种知识密集型的NLP任务中表现出了有希望的表现。但是,现有的知识语言模型都培训了单格式知识图数据,这将其应用限制为更多语言。在这项工作中,我们向预先rain基于知识的多语言语言模型(KMLMS)提出了一种新颖的框架。我们首先使用Wikidata知识图来生成大量的代码切换合成句和基于推理的多语言训练数据。然后基于所生成的数据的内部和际际结构,我们设计预先升温任务,以促进知识学习,这允许语言模型不仅存储事实知识,还可以学习有用的逻辑模式。我们的预制kmlms展示了对广泛知识密集型的交叉线路任务的显着性能,包括指定实体识别,事实知识检索,关系分类以及我们设计的新任务,即逻辑推理。我们的代码和预付费语言模型将公开可用。
translated by 谷歌翻译
交叉思考的预培训使用单晶和双语纯文本语料库取得了巨大的成功。然而,大多数预先训练的模型忽略了多语言知识,这是语言不可知的,但包括丰富的交叉结构对齐。在本文中,我们提出了一种XLM-K,这是一种跨语言模型,其在预训练中结合了多语言知识。xlm-k增强了具有两个知识任务的现有多语言预培训,即屏蔽实体预测任务和对象引入任务。我们评估MLQA,NER和XNLI的XLM-K。实验结果清楚地表明了对现有的多语言语言模型的显着改进。MLQA和NER上的结果展示了知识相关任务中的XLM-K的优越性。XNLI中的成功显示了在XLM-k中获得的更好的交叉翻转性。更重要的是,我们提供了详细的探测分析,以确认我们在培训前方案中捕获的所需知识。
translated by 谷歌翻译
多语言语言模型(\ mllms),如mbert,xlm,xlm-r,\ textit {etc。}已成为一种可行的选择,使预先估计到大量语言的力量。鉴于他们的成功在零射击转移学习中,在(i)建立更大的\ mllms〜覆盖了大量语言(ii)创建覆盖更广泛的任务和语言来评估的详尽工作基准mllms〜(iii)分析单音零点,零拍摄交叉和双语任务(iv)对Monolingual的性能,了解\ mllms〜(v)增强(通常)学习的通用语言模式(如果有的话)有限的容量\ mllms〜以提高他们在已见甚至看不见语言的表现。在这项调查中,我们审查了现有的文学,涵盖了上述与\ MLLMS有关的广泛研究领域。根据我们的调查,我们建议您有一些未来的研究方向。
translated by 谷歌翻译
Much recent progress in applications of machine learning models to NLP has been driven by benchmarks that evaluate models across a wide variety of tasks. However, these broad-coverage benchmarks have been mostly limited to English, and despite an increasing interest in multilingual models, a benchmark that enables the comprehensive evaluation of such methods on a diverse range of languages and tasks is still missing. To this end, we introduce the Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark, a multi-task benchmark for evaluating the cross-lingual generalization capabilities of multilingual representations across 40 languages and 9 tasks. We demonstrate that while models tested on English reach human performance on many tasks, there is still a sizable gap in the performance of cross-lingually transferred models, particularly on syntactic and sentence retrieval tasks. There is also a wide spread of results across languages. We release the benchmark 1 to encourage research on cross-lingual learning methods that transfer linguistic knowledge across a diverse and representative set of languages and tasks.
translated by 谷歌翻译
跨语言嵌入(CLWE)已被证明在许多跨语性任务中有用。但是,大多数现有的学习Clwe的方法,包括具有上下文嵌入的方法是无知的。在这项工作中,我们提出了一个新颖的框架,以通过仅利用双语词典的跨语性信号来使上下文嵌入在感觉层面上。我们通过首先提出一种新颖的感知感知的跨熵损失来明确地提出一种新颖的感知跨熵损失来实现我们的框架。通过感知感知的跨熵损失预算的单语Elmo和BERT模型显示出对单词感官歧义任务的显着改善。然后,我们提出了一个感官对齐目标,除了跨语义模型预训练的感知感知跨熵损失以及几种语言对的跨语义模型(英语对德语/西班牙语/日本/中文)。与最佳的基线结果相比,我们的跨语言模型分别在零摄影,情感分类和XNLI任务上达到0.52%,2.09%和1.29%的平均绩效提高。
translated by 谷歌翻译
Natural Language Processing (NLP) has been revolutionized by the use of Pre-trained Language Models (PLMs) such as BERT. Despite setting new records in nearly every NLP task, PLMs still face a number of challenges including poor interpretability, weak reasoning capability, and the need for a lot of expensive annotated data when applied to downstream tasks. By integrating external knowledge into PLMs, \textit{\underline{K}nowledge-\underline{E}nhanced \underline{P}re-trained \underline{L}anguage \underline{M}odels} (KEPLMs) have the potential to overcome the above-mentioned limitations. In this paper, we examine KEPLMs systematically through a series of studies. Specifically, we outline the common types and different formats of knowledge to be integrated into KEPLMs, detail the existing methods for building and evaluating KEPLMS, present the applications of KEPLMs in downstream tasks, and discuss the future research directions. Researchers will benefit from this survey by gaining a quick and comprehensive overview of the latest developments in this field.
translated by 谷歌翻译
We present, Naamapadam, the largest publicly available Named Entity Recognition (NER) dataset for the 11 major Indian languages from two language families. In each language, it contains more than 400k sentences annotated with a total of at least 100k entities from three standard entity categories (Person, Location and Organization) for 9 out of the 11 languages. The training dataset has been automatically created from the Samanantar parallel corpus by projecting automatically tagged entities from an English sentence to the corresponding Indian language sentence. We also create manually annotated testsets for 8 languages containing approximately 1000 sentences per language. We demonstrate the utility of the obtained dataset on existing testsets and the Naamapadam-test data for 8 Indic languages. We also release IndicNER, a multilingual mBERT model fine-tuned on the Naamapadam training set. IndicNER achieves the best F1 on the Naamapadam-test set compared to an mBERT model fine-tuned on existing datasets. IndicNER achieves an F1 score of more than 80 for 7 out of 11 Indic languages. The dataset and models are available under open-source licenses at https://ai4bharat.iitm.ac.in/naamapadam.
translated by 谷歌翻译
Translating training data into many languages has emerged as a practical solution for improving cross-lingual transfer. For tasks that involve span-level annotations, such as information extraction or question answering, an additional label projection step is required to map annotated spans onto the translated texts. Recently, a few efforts have utilized a simple mark-then-translate method to jointly perform translation and projection by inserting special markers around the labeled spans in the original sentence. However, as far as we are aware, no empirical analysis has been conducted on how this approach compares to traditional annotation projection based on word alignment. In this paper, we present an extensive empirical study across 42 languages and three tasks (QA, NER, and Event Extraction) to evaluate the effectiveness and limitations of both methods, filling an important gap in the literature. Experimental results show that our optimized version of mark-then-translate, which we call EasyProject, is easily applied to many languages and works surprisingly well, outperforming the more complex word alignment-based methods. We analyze several key factors that affect end-task performance, and show EasyProject works well because it can accurately preserve label span boundaries after translation. We will publicly release all our code and data.
translated by 谷歌翻译
GPT-3等大型自回归语言模型是几秒钟的学习者,可以在没有微调的情况下执行各种语言任务。虽然已知这些模型能够共同代表许多不同的语言,但他们的培训数据由英语主导,可能限制了它们的交叉概括。在这项工作中,我们在覆盖多种语言的平衡语料库上培训多语言自回归语言模型,并在广泛的任务中研究他们几乎没有零点的学习能力。我们最大的模型,具有75亿参数,在20多种代表语言中,在几种代表语言中,在几种代表性语言中,在几种代表性语言中,在多语言型号推理中表现出可比大小的GPT-3(在0次设置和0次拍摄设置中的绝对精度改善+ 7.4% 4-拍摄设置中的9.4%)和自然语言推理(每次拍摄和4次设置中的每一个+ 5.4%)。在Flores-101机器翻译基准测试中,我们的模型优于GPT-3在182个翻译方向上有32个培训例子,同时超过45个方向的官方监督基线。我们介绍了模型成功和失败的位置的详细分析,特别是它尤其显示在某些任务中实现交叉语境的内容学习,而仍然存在改善表面的鲁棒性和适应没有a的任务的余地自然冻结形式。最后,我们评估我们在仇恨语音检测中以五种语言的仇恨语音检测的模型,并发现它具有与可比大小的GPT-3模型类似的限制。
translated by 谷歌翻译
多语言预训练的语言模型在跨语言任务上表现出了令人印象深刻的表现。它极大地促进了自然语言处理在低资源语言上的应用。但是,当前的多语言模型仍然有些语言表现不佳。在本文中,我们提出了Cino(中国少数族裔训练的语言模型),这是一种用于中国少数语言的多语言预训练的语言模型。它涵盖了标准的中文,Yue中文和其他六种少数民族语言。为了评估多语言模型在少数族裔语言上的跨语性能力,我们从Wikipedia和新闻网站收集文档,并构建两个文本分类数据集,WCM(Wiki-Chinese-Minority)和CMNEWS(中国最少的新闻)。我们表明,Cino在各种分类任务上的表现明显优于基准。Cino模型和数据集可在http://cino.hfl-rc.com上公开获得。
translated by 谷歌翻译
随着预培训的语言模型变得更加要求资源,因此资源丰富的语言(例如英语和资源筛选)语言之间的不平等正在恶化。这可以归因于以下事实:每种语言中的可用培训数据量都遵循幂律分布,并且大多数语言都属于分布的长尾巴。一些研究领域试图缓解这个问题。例如,在跨语言转移学习和多语言培训中,目标是通过从资源丰富的语言中获得的知识使长尾语言受益。尽管成功,但现有工作主要集中于尝试尽可能多的语言。结果,有针对性的深入分析主要不存在。在这项研究中,我们专注于单一的低资源语言,并使用跨语性培训(XPT)进行广泛的评估和探测实验。为了使转移方案具有挑战性,我们选择韩语作为目标语言,因为它是一种孤立的语言,因此与英语几乎没有类型的分类。结果表明,XPT不仅优于表现或与单语模型相当,该模型训练有大小的数据,而且在传输过程中也很高。
translated by 谷歌翻译
This paper aims for a potential architectural improvement for multilingual learning and asks: Can different tasks from different languages be modeled in a monolithic framework, i.e. without any task/language-specific module? The benefit of achieving this could open new doors for future multilingual research, including allowing systems trained on low resources to be further assisted by other languages as well as other tasks. We approach this goal by developing a learning framework named Polyglot Prompting to exploit prompting methods for learning a unified semantic space for different languages and tasks with multilingual prompt engineering. We performed a comprehensive evaluation of 6 tasks, namely topic classification, sentiment classification, named entity recognition, question answering, natural language inference, and summarization, covering 24 datasets and 49 languages. The experimental results demonstrated the efficacy of multilingual multitask prompt-based learning and led to inspiring observations. We also present an interpretable multilingual evaluation methodology and show how the proposed framework, multilingual multitask prompt training, works. We release all datasets prompted in the best setting and code.
translated by 谷歌翻译
对于多语言序列到序列预审预周序模型(多语言SEQ2SEQ PLM),例如姆巴特(Mbart),自制的预处理任务接受了多种单语言的培训,例如25种来自CommonCrawl的语言,而下游的跨语言任务通常在双语语言子集上进行,例如英语 - 德国人,存在数据差异,即领域的差异,以及跨语言学习客观差异,即在训练和填充阶段之间的任务差异。为了弥合上述跨语言域和任务差距,我们将使用额外的代码切换恢复任务扩展了香草预后管道。具体而言,第一阶段采用自我监督的代码转换还原任务作为借口任务,从而允许多语言SEQ2SEQ PLM获取一些域内对齐信息。在第二阶段,我们正常在下游数据上微调模型。 NLG评估(12个双语翻译任务,30个零射击任务和2项跨语言摘要任务)和NLU评估(7个跨语性自然语言推理任务)的实验表明,我们的模型超过了强大的基线MBART,具有标准的FINETUNNING,这表明了我们的模型策略,一致。分析表明,我们的方法可以缩小跨语性句子表示的欧几里得距离,并通过微不足道的计算成本改善模型概括。我们在:https://github.com/zanchangtong/csr4mbart上发布代码。
translated by 谷歌翻译
虽然对多语言视觉语言预测的模型实现了一些好处,但是当将多句预训练的视力语言模型应用于非英语数据时,各种任务和语言的最新基准测试表明,跨语性概括不佳,并且在有监督之间存在很大的差距( )英语表现和(零射)跨语性转移。在这项工作中,我们探讨了这些模型在零拍的跨语性视觉响应(VQA)任务上的糟糕性能,其中模型在英语视觉问题数据上进行了微调,并对7种类型上多样的语言进行了评估。我们通过三种策略改善了跨语性转移:(1)我们引入了语言的先验目标,以增加基于相似性损失以指导模型在培训期间的跨渗透损失,(2)我们学习了一个特定于任务的子网络,改善跨语性概括并减少不修改模型的方差,(3)我们使用合成代码混合来扩大培训示例,以促进源和目标语言之间的嵌入。我们使用预审计的多语言多模式变压器UC2和M3P进行的XGQA实验证明了针对7种语言提出的微调策略的一致有效性,以稀疏模型优于现有的转移方法。复制我们发现的代码和数据已公开可用。
translated by 谷歌翻译
Multilingual Pretrained Language Models (MPLMs) have shown their strong multilinguality in recent empirical cross-lingual transfer studies. In this paper, we propose the Prompts Augmented by Retrieval Crosslingually (PARC) pipeline to improve the zero-shot performance on low-resource languages (LRLs) by augmenting the context with semantically similar sentences retrieved from a high-resource language (HRL) as prompts. PARC improves the zero-shot performance on three downstream tasks (binary sentiment classification, topic categorization and natural language inference) with multilingual parallel test sets across 10 LRLs covering 6 language families in both unlabeled settings (+5.1%) and labeled settings (+16.3%). PARC-labeled also outperforms the finetuning baseline by 3.7%. We find a significant positive correlation between cross-lingual transfer performance on one side, and the similarity between the high- and low-resource languages as well as the amount of low-resource pretraining data on the other side. A robustness analysis suggests that PARC has the potential to achieve even stronger performance with more powerful MPLMs.
translated by 谷歌翻译
以前的工作主要侧重于改善NLU任务的交叉传输,具有多语言预用编码器(MPE),或提高与伯特的监督机器翻译的性能。然而,探索了,MPE是否可以有助于促进NMT模型的交叉传递性。在本文中,我们专注于NMT中的零射频转移任务。在此任务中,NMT模型培训,只有一个语言对的并行数据集和搁置架MPE,然后它直接测试在零拍语言对上。我们为此任务提出了Sixt,一个简单而有效的模型。 SIXT利用了两阶段培训计划利用MPE,并进一步改进了解离编码器和容量增强的解码器。使用此方法,SIMPT显着优于MBart,这是一个用于NMT的预磨削的多语言编码器解码器模型,平均改善了14个源语言的零拍摄的任何英语测试集上的7.1 BLEU。此外,培训计算成本和培训数据较少,我们的模型在15个任何英语测试组上实现了比Criss和M2M-100,两个强大的多语言NMT基线更好的性能。
translated by 谷歌翻译
致辞推理是自然语言处理中的关键问题之一,但标记数据的相对稀缺缺少英语以外的语言的进度。预先磨削的交叉模型是一种强大的语言不可知论者的来源,但它们的固有推理能力仍在积极研究。在这项工作中,我们设计了一种简单的方法来推理,将线性分类器列举为具有多针关注的重量。为了评估这种方法,我们通过在标准化管道内的先前工作中处理多种数据集来创建多语言WinoGrad模式语料库,并在样品外性能方面测量交叉语言泛化能力。该方法在近期监督和无人监督推理的最近监督和无监督的方法中表现得很竞争,即使在以零拍摄方式应用于其他语言。此外,我们证明大多数性能由所有研究的语言的相同小的注意头给出,这提供了在多语言编码器中的普遍推理能力的证据。
translated by 谷歌翻译
In this work, we introduce IndicXTREME, a benchmark consisting of nine diverse tasks covering 18 languages from the Indic sub-continent belonging to four different families. Across languages and tasks, IndicXTREME contains a total of 103 evaluation sets, of which 51 are new contributions to the literature. To maintain high quality, we only use human annotators to curate or translate\footnote{for IndicXParaphrase, where an automatic translation system is used, a second human verification and correction step is done.} our datasets. To the best of our knowledge, this is the first effort toward creating a standard benchmark for Indic languages that aims to test the zero-shot capabilities of pretrained language models. We also release IndicCorp v2, an updated and much larger version of IndicCorp that contains 20.9 billion tokens in 24 languages. We pretrain IndicBERT v2 on IndicCorp v2 and evaluate it on IndicXTREME to show that it outperforms existing multilingual language models such as XLM-R and MuRIL.
translated by 谷歌翻译
最近,大型预用语言模型(LMS)越来越受欢迎。培训这些模型需要更多的计算资源,并且大多数现有模型仅在英文文本上培训。以其他语言训练这些模型非常昂贵。为了缓解这个问题,我们介绍了一种叫做威施塞的方法 - 将英语模型传输到新语言。我们将英语模型的销量与目标语言中的销量交换,并初始化令牌嵌入式,以便通过利用覆盖英语和目标语言的多语言静态字嵌入来初始化令牌嵌入式。我们使用Wechsel将GPT-2和Roberta模型转移到4种其他语言(法语,德语,中文和斯瓦希里语)。 Wechsel通过以前提出的跨语言参数转移和优于比较大小的模型来改善从目标语言的划痕训练的相当大小的型号,距离培训速度较小。我们的方法使培训大型语言模型为新语言更容易访问,更少损害环境。我们宣传我们的代码和型号。
translated by 谷歌翻译
Logical reasoning of text is an important ability that requires understanding the information present in the text, their interconnections, and then reasoning through them to infer new conclusions. Prior works on improving the logical reasoning ability of language models require complex processing of training data (e.g., aligning symbolic knowledge to text), yielding task-specific data augmentation solutions that restrict the learning of general logical reasoning skills. In this work, we propose APOLLO, an adaptively pretrained language model that has improved logical reasoning abilities. We select a subset of Wikipedia, based on a set of logical inference keywords, for continued pretraining of a language model. We use two self-supervised loss functions: a modified masked language modeling loss where only specific parts-of-speech words, that would likely require more reasoning than basic language understanding, are masked, and a sentence-level classification loss that teaches the model to distinguish between entailment and contradiction types of sentences. The proposed training paradigm is both simple and independent of task formats. We demonstrate the effectiveness of APOLLO by comparing it with prior baselines on two logical reasoning datasets. APOLLO performs comparably on ReClor and outperforms baselines on LogiQA.
translated by 谷歌翻译