The k-means method is a widely used clustering technique that seeks to minimize the average squared distance between points in the same cluster. Although it offers no accuracy guarantees, its simplicity and speed are very appealing in practice. By augmenting k-means with a simple, randomized seeding technique, we obtain an algorithm that is O(log k)-competitive with the optimal clustering. Experiments show our augmentation improves both the speed and the accuracy of k-means, often quite dramatically.
translated by 谷歌翻译
本文展示了如何适应$ k $ -MEANS问题的几种简单和经典的基于采样的算法,以使用离群值设置。最近,Bhaskara等人。 (Neurips 2019)展示了如何将古典$ K $ -MEANS ++算法适应与异常值的设置。但是,他们的算法需要输出$ o(\ log(k)\ cdot z)$ outiers,其中$ z $是true Outliers的数量,以匹配$ o(\ log k)$ - 近似值的$ k的近似保证$ -Means ++。在本文中,我们以他们的想法为基础,并展示了如何适应几个顺序和分布式的$ k $ - 均值算法,但使用离群值来设置,但具有更强的理论保证:我们的算法输出$(1+ \ VAREPSILON)z $ OUTLIERS Z $ OUTLIERS在实现$ o(1 / \ varepsilon)$ - 近似目标函数的同时。在顺序世界中,我们通过改编Lattanzi和Sohler的最新算法来实现这一目标(ICML 2019)。在分布式设置中,我们适应了Guha等人的简单算法。 (IEEE Trans。知道和数据工程2003)以及Bahmani等人的流行$ K $ -Means $ \ | $。 (PVLDB 2012)。我们技术的理论应用是一种具有运行时间$ \ tilde {o}(nk^2/z)$的算法,假设$ k \ ll z \ ll n $。这与Omacle模型中此问题的$ \ Omega(NK^2/z)$的匹配下限相互补。
translated by 谷歌翻译
Arthur和Vassilvitskii的著名$ K $ -MEANS ++算法[SODA 2007]是解决实践中$ K $ - 英镑问题的最流行方式。该算法非常简单:它以随机的方式均匀地对第一个中心进行采样,然后始终将每个$ K-1 $中心的中心取样与迄今为止最接近最接近中心的平方距离成比例。之后,运行了劳埃德的迭代算法。已知$ k $ -Means ++算法可以返回预期的$ \ theta(\ log K)$近似解决方案。在他们的开创性工作中,Arthur和Vassilvitskii [Soda 2007]询问了其以下\ emph {greedy}的保证:在每一步中,我们采样了$ \ ell $候选中心,而不是一个,然后选择最小化新的中心成本。这也是$ k $ -Means ++在例如中实现的方式。流行的Scikit-Learn库[Pedregosa等人; JMLR 2011]。我们为贪婪的$ k $ -Means ++提供几乎匹配的下限和上限:我们证明它是$ o(\ ell^3 \ log^3 k)$ - 近似算法。另一方面,我们证明了$ \ omega的下限(\ ell^3 \ log^3 k / \ log^2(\ ell \ log k))$。以前,只有$ \ omega(\ ell \ log k)$下限是已知的[bhattacharya,eube,r \“ ogllin,schmidt; esa 2020),并且没有已知的上限。
translated by 谷歌翻译
我们提供了一个新的双标准$ \ tilde {o}(\ log ^ 2 k)$竞争算法,可解释$ k $ -means群集。最近解释了$ k $ -means最近由Dasgupta,Frost,Moshkovitz和Rashtchian(ICML 2020)引入。它由易于解释和理解(阈值)决策树或图表描述。可解释的$ k $ -means集群的成本等于其集群成本的总和;每个群集的成本等于从群集中点到该群集的中心的平方距离之和。我们的随机双标准算法构造了一个阈值决策树,将数据设置为$(1+ \ delta)k $群集(其中$ \ delta \ In(0,1)$是算法的参数)。此群集的成本是大多数$ \ tilde {o}(1 / \ delta \ cdot \ log ^ 2 k)$乘以最佳不受约束$ k $ -means群集的成本。我们表明这一界限几乎是最佳的。
translated by 谷歌翻译
K-means++ is an important algorithm to choose initial cluster centers for the k-means clustering algorithm. In this work, we present a new algorithm that can solve the $k$-means++ problem with near optimal running time. Given $n$ data points in $\mathbb{R}^d$, the current state-of-the-art algorithm runs in $\widetilde{O}(k )$ iterations, and each iteration takes $\widetilde{O}(nd k)$ time. The overall running time is thus $\widetilde{O}(n d k^2)$. We propose a new algorithm \textsc{FastKmeans++} that only takes in $\widetilde{O}(nd + nk^2)$ time, in total.
translated by 谷歌翻译
我们考虑在线无替代环境中的$ k $ - emeans集群,其中一个人必须在流媒体传输时立即拍摄每个数据点$ x_t $ x_t $。我们的作品专注于\ emph {任意订单}假设没有限制点数$ x $如何订购或生成。与最佳聚类成本相比,在其近似值中评估该设置中的算法,它们选择的中心数及其内存使用率。最近,Bhattacharjee和Moshkovitz(2020)定义了一个参数,$ lower _ {\ alpha,k}(x)$,它控制最小的中心数量的任何$ \ alpha $-xpruckatimation聚类算法,必须给予任何金额输入$ x $。为了补充结果,我们提供了第一个算法,它需要$ \ tilde {o}(下_ {\ alpha,k}(x))$中心(k,log n $)同时实现恒定近似除了保存中心所需的内存之外,还使用$ \ tilde {o}(k)$内存。我们的算法显示它在无替代设置中,可以在使用很少的额外内存时占用订单 - 最佳中心。
translated by 谷歌翻译
Clustering is a fundamental problem in many areas, which aims to partition a given data set into groups based on some distance measure, such that the data points in the same group are similar while that in different groups are dissimilar. Due to its importance and NP-hardness, a lot of methods have been proposed, among which evolutionary algorithms are a class of popular ones. Evolutionary clustering has found many successful applications, but all the results are empirical, lacking theoretical support. This paper fills this gap by proving that the approximation performance of the GSEMO (a simple multi-objective evolutionary algorithm) for solving the three popular formulations of clustering, i.e., $k$-center, $k$-median and $k$-means, can be theoretically guaranteed. Furthermore, we prove that evolutionary clustering can have theoretical guarantees even when considering fairness, which tries to avoid algorithmic bias, and has recently been an important research topic in machine learning.
translated by 谷歌翻译
我们在$ d $ dimensional Euclidean Space中研究私人$ k $ -Median和$ k $ -means聚集问题。通过利用树的嵌入,我们提供了一种有效且易于实现的算法,该算法在非私人方法的经验上具有竞争力。我们证明我们的方法计算一个最多$ o(d^{3/2} \ log n)\ cdot opt + o(k d^2 \ log^2 n / \ epsilon^2)$的解决方案,其中$ \ Epsilon $是隐私担保。 (使用标准尺寸缩小技术可以用$ o(\ log k)$替换尺寸项,$ d $。)尽管最坏的案例保证比最先进的私人聚类方法的状态更糟糕,但算法是我们建议是实用的,以接近线性的方式运行,$ \ tilde {o}(nkd)$,时间和比例为数千万分。我们还表明,我们的方法适合在大规模分布式计算环境中并行化。特别是我们表明,我们的私人算法可以在sublinear内存制度中的对数MPC弹奏数中实现。最后,我们通过经验评估来补充理论分析,证明了该算法与其他隐私聚类基线相比的效率和准确性。
translated by 谷歌翻译
K-MEDIAN和K-MEACE是聚类算法的两个最受欢迎的目标。尽管有密集的努力,但对这些目标的近似性很好地了解,特别是在$ \ ell_p $ -metrics中,仍然是一个重大的开放问题。在本文中,我们在$ \ ell_p $ -metrics中显着提高了文献中已知的近似因素的硬度。我们介绍了一个名为Johnson覆盖假说(JCH)的新假设,这大致断言设定系统上的良好的Max K-Coverage问题难以近似于1-1 / e,即使是成员图形设置系统是Johnson图的子图。然后,我们展示了Cohen-Addad和Karthik引入的嵌入技术的概括(Focs'19),JCH意味着K-MEDIAN和K-MERION在$ \ ell_p $ -metrics中的近似结果的近似值的硬度为近距离对于一般指标获得的人。特别地,假设JCH我们表明很难近似K-Meator目标:$ \ Bullet $离散情况:$ \ ell_1 $ 3.94 - $ \ ell_2中的1.73因素为1.73倍$$ - 这分别在UGC下获得了1.56和1.17的先前因子。 $ \ bullet $持续案例:$ \ ell_1 $ 2210 - $ \ ell_2 $的$ \ ell_1 $ 210。$ \ ell_2 $-metric;这在UGC下获得的$ \ ell_2 $的$ \ ell_2 $的先前因子提高了1.07。对于K-Median目标,我们还获得了类似的改进。此外,我们使用Dinure等人的工作证明了JCH的弱版本。 (Sicomp'05)在超图顶点封面上,恢复Cohen-Addad和Karthik(Focs'19 Focs'19)上面的所有结果(近)相同的不可识别因素,但现在在标准的NP $ \ NEQ $ P假设下(代替UGC)。
translated by 谷歌翻译
我们介绍了$(p,q)$ - 公平集群问题。在这个问题中,我们给出了一组点数$ p $和不同重量函数的集合$ w $。我们想找到一个群集,最小化$ \ ell_q $ -norm的$ \ ell_p $-norm的$ \ ell_p $ -norms的$ p $从中心。这概括了各种聚类问题,包括社会博览会$ k $ -Median和$ k $ - emeans,并且与其他问题紧密相连,如Densest $ K $ -subgraph和Min $ K $ -Union。我们利用凸编程技术来估计$(p,q)$ - 为$ p $和$ q $的不同价值观达到公平的聚类问题。当$ p \ geq q $时,我们得到$ o(k ^ {(pq)/(2pq)})$,它几乎匹配$ k ^ {\ omega((pq)/(pq))} $低于基于Min $ K $ -Union和其他问题的猜想硬度的束缚。当$ q \ geq p $时,我们得到一个近似,它与界限$ p,q $的输入的大小无关,也与最近的$ o相匹配((\ log n /(\ log \ log n)) ^ {1 / p})$ - $(p,\ infty)$ - makarychev和vakilian(colt 2021)的公平聚类。
translated by 谷歌翻译
We introduce a sketch-and-solve approach to speed up the Peng-Wei semidefinite relaxation of k-means clustering. When the data is appropriately separated we identify the k-means optimal clustering. Otherwise, our approach provides a high-confidence lower bound on the optimal k-means value. This lower bound is data-driven; it does not make any assumption on the data nor how it is generated. We provide code and an extensive set of numerical experiments where we use this approach to certify approximate optimality of clustering solutions obtained by k-means++.
translated by 谷歌翻译
我们重新审视了Chierichetti等人首先引入的公平聚类问题,该问题要求每个受保护的属性在每个集群中具有近似平等的表示。即,余额财产。现有的公平聚类解决方案要么是不可扩展的,要么无法在聚类目标和公平之间实现最佳权衡。在本文中,我们提出了一种新的公平概念,我们称之为$ tau $ $ $ - fair公平,严格概括了余额财产,并实现了良好的效率与公平折衷。此外,我们表明,简单的基于贪婪的圆形算法有效地实现了这一权衡。在更一般的多价受保护属性的设置下,我们严格地分析了算法的理论特性。我们的实验结果表明,所提出的解决方案的表现优于所有最新算法,即使对于大量簇,也可以很好地工作。
translated by 谷歌翻译
在使用提供明确定义的隐私保证的用户数据时,至关重要。在这项工作中,我们旨在与第三方私下操纵和分享整个稀疏数据集。实际上,差异隐私已成为隐私的黄金标准,但是,当涉及到稀疏数据集时,作为我们的主要结果之一,我们证明\ emph {any}与最初的私人机制有差异化的私人机制数据集注定要拥有非常薄弱的隐私保证。因此,我们需要选择其他隐私概念,例如$ k $ - 匿名性更好地在这种情况下保存实用程序。在这项工作中,我们介绍了$ k $ - 匿名的变体,我们称之为平滑$ k $ - 匿名和设计简单算法,可有效地提供平滑的$ k $ - 匿名性。我们进一步执行经验评估以支持我们的理论保证,并表明我们的算法改善了匿名数据下游机器学习任务的性能。
translated by 谷歌翻译
The research area of algorithms with predictions has seen recent success showing how to incorporate machine learning into algorithm design to improve performance when the predictions are correct, while retaining worst-case guarantees when they are not. Most previous work has assumed that the algorithm has access to a single predictor. However, in practice, there are many machine learning methods available, often with incomparable generalization guarantees, making it hard to pick a best method a priori. In this work we consider scenarios where multiple predictors are available to the algorithm and the question is how to best utilize them. Ideally, we would like the algorithm's performance to depend on the quality of the best predictor. However, utilizing more predictions comes with a cost, since we now have to identify which prediction is the best. We study the use of multiple predictors for a number of fundamental problems, including matching, load balancing, and non-clairvoyant scheduling, which have been well-studied in the single predictor setting. For each of these problems we introduce new algorithms that take advantage of multiple predictors, and prove bounds on the resulting performance.
translated by 谷歌翻译
We study the problem of graph clustering under a broad class of objectives in which the quality of a cluster is defined based on the ratio between the number of edges in the cluster, and the total weight of vertices in the cluster. We show that our definition is closely related to popular clustering measures, namely normalized associations, which is a dual of the normalized cut objective, and normalized modularity. We give a linear time constant-approximate algorithm for our objective, which implies the first constant-factor approximation algorithms for normalized modularity and normalized associations.
translated by 谷歌翻译
腔是总结数据的最受欢迎的范例之一。特别是,存在许多用于聚类问题的高性能核心,例如理论和实践中的$ k $ - 均值。奇怪的是,没有进行比较可用$ k $ - 均值核心的质量的工作。在本文中,我们进行了这样的评估。目前尚无算法来测量候选核心的失真。我们提供了一些证据,表明为什么这可能在计算上很难。为了补充这一点,我们提出了一个基准,我们认为计算核心具有挑战性,这也使我们对核心的评估很容易(启发式)评估。使用此基准和现实世界数据集,我们对理论和实践中最常用的核心算法进行了详尽的评估。
translated by 谷歌翻译
在设计聚类算法时,初始中心的选择对于学习簇的质量至关重要。在本文中,我们基于数据的构建,我们开发了一种新的初始化方案,称为$ k $ -Median问题(例如图形引起的离散空间),基于数据的构造。从树中,我们提出了一种新颖有效的搜索算法,用于良好的初始中心,随后可用于本地搜索算法。我们提出的HST初始化可以产生与另一种流行初始化方法$ K $ -Median ++的初始中心,具有可比的效率。 HST初始化也可以扩展到差异隐私(DP)的设置,以生成私人初始中心。我们表明,应用DP本地搜索后,我们的私有HST初始化会改善对近似错误的先前结果,并在小因素内接近下限。实验证明了理论的合理性,并证明了我们提出的方法的有效性。我们的方法也可以扩展到$ k $ -MEANS问题。
translated by 谷歌翻译
模糊或柔软$ k $ -means目标是众所周知的$ k $ -means问题的流行泛化,将$ k $ -means扩展到不确定,模糊和否则难以群集的数据集的聚类能力。在本文中,我们提出了一个半监督的主动聚类框架,其中允许学习者与Oracle(域专家)进行交互,询问一组所选项目之间的相似性。我们研究了本框架中的聚类查询和计算复杂性。我们证明具有一些这样的相似性查询使得一个人能够将多项式时间近似算法获得到另外的辅助NP难题。特别是,我们提供了在此设置中的模糊聚类的算法,该算法询问$ O(\ mathsf {poly}(k)\ log n)$相似查询并使用多项式 - 时间复杂度运行,其中$ n $是项目的数量。模糊$ k $ -means目标是非渗透,$ k $ -means作为一个特殊情况,相当于一些其他通用非核解问题,如非负矩阵分解。普遍存在的LLOYD型算法(或交替的最小化算法)可以以局部最小粘在一起。我们的结果表明,通过制作一些相似性查询,问题变得更加易于解决。最后,我们通过现实世界数据集测试我们的算法,展示了其在现实世界应用中的有效性。
translated by 谷歌翻译
在相关聚类问题中,我们为我们提供了一组具有成对相似性信息的对象。我们的目的是将这些对象划分为尽可能紧密匹配此信息的群集。更具体地说,成对信息是作为加权图$ g $给​​出的,其边缘标记为``类似的''或``不同''二进制分类器。目的是产生一个聚类,以最大程度地减少``分歧''的权重:跨簇中类似边缘和群集中不同边缘的权重的总和。在此博览会中,我们重点介绍$ g $完整且未加权的情况。我们探索了此假设下相关聚类问题的四种近似算法。特别是,我们描述了以下算法:(i)$ 17429- $ $近似算法,Bansal,Blum和Chawla,(II)$ 4- $ $近似算法由$ 4- $ $近似算法。 Charikar,Guruswami和Wirth(III)Ailon,Charikar和Newman和Newman(IV)的$ 3- $近似算法是Chawla,Makarychev,Schramm和Yaroslavtsev的$ 2.06- $近似算法。
translated by 谷歌翻译
Graph clustering is a fundamental problem in unsupervised learning, with numerous applications in computer science and in analysing real-world data. In many real-world applications, we find that the clusters have a significant high-level structure. This is often overlooked in the design and analysis of graph clustering algorithms which make strong simplifying assumptions about the structure of the graph. This thesis addresses the natural question of whether the structure of clusters can be learned efficiently and describes four new algorithmic results for learning such structure in graphs and hypergraphs. All of the presented theoretical results are extensively evaluated on both synthetic and real-word datasets of different domains, including image classification and segmentation, migration networks, co-authorship networks, and natural language processing. These experimental results demonstrate that the newly developed algorithms are practical, effective, and immediately applicable for learning the structure of clusters in real-world data.
translated by 谷歌翻译