我们提供了一个新的双标准$ \ tilde {o}(\ log ^ 2 k)$竞争算法,可解释$ k $ -means群集。最近解释了$ k $ -means最近由Dasgupta,Frost,Moshkovitz和Rashtchian(ICML 2020)引入。它由易于解释和理解(阈值)决策树或图表描述。可解释的$ k $ -means集群的成本等于其集群成本的总和;每个群集的成本等于从群集中点到该群集的中心的平方距离之和。我们的随机双标准算法构造了一个阈值决策树,将数据设置为$(1+ \ delta)k $群集(其中$ \ delta \ In(0,1)$是算法的参数)。此群集的成本是大多数$ \ tilde {o}(1 / \ delta \ cdot \ log ^ 2 k)$乘以最佳不受约束$ k $ -means群集的成本。我们表明这一界限几乎是最佳的。
translated by 谷歌翻译
许多聚类算法由某些成本函数引导,例如广泛使用的$ k $ -means成本。这些算法将数据点划分为具有经常复杂的边界的集群,在解释聚类决策时创造了困难。在最近的工作中,Dasgupta,Frost,Moshkovitz和Rashtchian(ICML 2020)引入了可解释的聚类,其中群集边界是轴并行超平面,并且通过将决策树应用于数据来获得群集。这里的核心问题是:解释性限制增加了多少成本函数的值?鉴于$ d $ -dimensional数据点,我们显示了一个有效的算法,该算法找到了可解释的群集,其$ k $ -means成本为$ k ^ {1 - 2 / d} \,\ mathrm {poly}(d \ log k)在没有可解释性约束的情况下,群集可实现的最低成本的$倍,假设$ k,d \ ge 2 $。通过Makarychev-Shan(ICML 2021),Gamlath-jia-polak-svensson(2021),或esfandiari-mirrokni - Narayanan(2021),我们得到了$ k ^ {1 - 2 / d} \,\ mathrm {polylog}(k)$的改进界限,我们为每种选择$ k,d \ ge 2 $最多可为$ k $的多对数因子。对于$ d = 2 $特别地,我们显示$ o(\ log k \ log \ log k)$绑定,在leaker和murtinho的$ o(k \ log k)$的以前最佳界限的近乎指数上(ICML 2021)。
translated by 谷歌翻译
$ k $ -means和$ k $ -median集群是强大的无监督机器学习技术。但是,由于对所有功能的复杂依赖性,解释生成的群集分配是挑战性的。 Moshkovitz,Dasgupta,Rashtchian和Frost [ICML 2020]提出了一个优雅的可解释$ K $ -means和$ K $ -Median聚类型号。在此模型中,具有$ k $叶子的决策树提供了集群中的数据的直接表征。我们研究了关于可解释的聚类的两个自然算法问题。 (1)对于给定的群集,如何通过使用$ k $叶的决策树找到“最佳解释”? (2)对于一套给定的点,如何找到一个以美元的决策树,最小化$ k $ -means / median目标的可解释的聚类?要解决第一个问题,我们介绍了一个新的可解释群集模型。我们的型号受到强大统计数据的异常值概念的启发,是以下情况。我们正在寻求少数积分(异常值),其删除使现有的聚类良好可解释。为了解决第二个问题,我们开始研究Moshkovitz等人的模型。从多元复杂性的角度来看。我们严格的算法分析揭示了参数的影响,如数据的输入大小,尺寸,异常值的数量,簇数,近似比,呈现可解释的聚类的计算复杂度。
translated by 谷歌翻译
我们研究了[Dasgupta等,ICML 2020]提出的框架中一些可解释的聚类问题的计算复杂性,其中通过轴对准决策树实现了解释性。我们考虑$ k $ -MEANS,$ K $ -MEDIANS,$ K $ - 中心和间距成本功能。我们证明,前三个很难优化,而后者可以在多项式时间进行优化。
translated by 谷歌翻译
本文展示了如何适应$ k $ -MEANS问题的几种简单和经典的基于采样的算法,以使用离群值设置。最近,Bhaskara等人。 (Neurips 2019)展示了如何将古典$ K $ -MEANS ++算法适应与异常值的设置。但是,他们的算法需要输出$ o(\ log(k)\ cdot z)$ outiers,其中$ z $是true Outliers的数量,以匹配$ o(\ log k)$ - 近似值的$ k的近似保证$ -Means ++。在本文中,我们以他们的想法为基础,并展示了如何适应几个顺序和分布式的$ k $ - 均值算法,但使用离群值来设置,但具有更强的理论保证:我们的算法输出$(1+ \ VAREPSILON)z $ OUTLIERS Z $ OUTLIERS在实现$ o(1 / \ varepsilon)$ - 近似目标函数的同时。在顺序世界中,我们通过改编Lattanzi和Sohler的最新算法来实现这一目标(ICML 2019)。在分布式设置中,我们适应了Guha等人的简单算法。 (IEEE Trans。知道和数据工程2003)以及Bahmani等人的流行$ K $ -Means $ \ | $。 (PVLDB 2012)。我们技术的理论应用是一种具有运行时间$ \ tilde {o}(nk^2/z)$的算法,假设$ k \ ll z \ ll n $。这与Omacle模型中此问题的$ \ Omega(NK^2/z)$的匹配下限相互补。
translated by 谷歌翻译
Arthur和Vassilvitskii的著名$ K $ -MEANS ++算法[SODA 2007]是解决实践中$ K $ - 英镑问题的最流行方式。该算法非常简单:它以随机的方式均匀地对第一个中心进行采样,然后始终将每个$ K-1 $中心的中心取样与迄今为止最接近最接近中心的平方距离成比例。之后,运行了劳埃德的迭代算法。已知$ k $ -Means ++算法可以返回预期的$ \ theta(\ log K)$近似解决方案。在他们的开创性工作中,Arthur和Vassilvitskii [Soda 2007]询问了其以下\ emph {greedy}的保证:在每一步中,我们采样了$ \ ell $候选中心,而不是一个,然后选择最小化新的中心成本。这也是$ k $ -Means ++在例如中实现的方式。流行的Scikit-Learn库[Pedregosa等人; JMLR 2011]。我们为贪婪的$ k $ -Means ++提供几乎匹配的下限和上限:我们证明它是$ o(\ ell^3 \ log^3 k)$ - 近似算法。另一方面,我们证明了$ \ omega的下限(\ ell^3 \ log^3 k / \ log^2(\ ell \ log k))$。以前,只有$ \ omega(\ ell \ log k)$下限是已知的[bhattacharya,eube,r \“ ogllin,schmidt; esa 2020),并且没有已知的上限。
translated by 谷歌翻译
在本文中,我们提出了一个自然的单个偏好(IP)稳定性的概念,该概念要求每个数据点平均更接近其自身集群中的点,而不是其他群集中的点。我们的概念可以从几个角度的动机,包括游戏理论和算法公平。我们研究了与我们提出的概念有关的几个问题。我们首先表明,确定给定数据集通常允许进行IP稳定的聚类通常是NP-HARD。结果,我们探索了在某些受限度量空间中查找IP稳定聚类的有效算法的设计。我们提出了一种poly Time算法,以在实际线路上找到满足精确IP稳定性的聚类,并有效地算法来找到针对树度量的IP稳定2聚类。我们还考虑放松稳定性约束,即,与其他任何集群相比,每个数据点都不应太远。在这种情况下,我们提供具有不同保证的多时间算法。我们在实际数据集上评估了一些算法和几种标准聚类方法。
translated by 谷歌翻译
分层聚类研究将数据集的递归分区设置为连续较小尺寸的簇,并且是数据分析中的基本问题。在这项工作中,我们研究了Dasgupta引入的分层聚类的成本函数,并呈现了两个多项式时间近似算法:我们的第一个结果是高度电导率图的$ O(1)$ - 近似算法。我们简单的建筑绕过了在文献中已知的稀疏切割的复杂递归常规。我们的第二个和主要结果是一个US(1)$ - 用于展示群集明确结构的宽族图形的近似算法。该结果推出了以前的最先进的,该现有技术仅适用于从随机模型产生的图表。通过对合成和现实世界数据集的实证分析,我们所呈现的算法的实证分析表明了我们的工作的重要性,以其具有明确定义的集群结构的先前所提出的图表算法。
translated by 谷歌翻译
我们在$ d $ dimensional Euclidean Space中研究私人$ k $ -Median和$ k $ -means聚集问题。通过利用树的嵌入,我们提供了一种有效且易于实现的算法,该算法在非私人方法的经验上具有竞争力。我们证明我们的方法计算一个最多$ o(d^{3/2} \ log n)\ cdot opt + o(k d^2 \ log^2 n / \ epsilon^2)$的解决方案,其中$ \ Epsilon $是隐私担保。 (使用标准尺寸缩小技术可以用$ o(\ log k)$替换尺寸项,$ d $。)尽管最坏的案例保证比最先进的私人聚类方法的状态更糟糕,但算法是我们建议是实用的,以接近线性的方式运行,$ \ tilde {o}(nkd)$,时间和比例为数千万分。我们还表明,我们的方法适合在大规模分布式计算环境中并行化。特别是我们表明,我们的私人算法可以在sublinear内存制度中的对数MPC弹奏数中实现。最后,我们通过经验评估来补充理论分析,证明了该算法与其他隐私聚类基线相比的效率和准确性。
translated by 谷歌翻译
在设计聚类算法时,初始中心的选择对于学习簇的质量至关重要。在本文中,我们基于数据的构建,我们开发了一种新的初始化方案,称为$ k $ -Median问题(例如图形引起的离散空间),基于数据的构造。从树中,我们提出了一种新颖有效的搜索算法,用于良好的初始中心,随后可用于本地搜索算法。我们提出的HST初始化可以产生与另一种流行初始化方法$ K $ -Median ++的初始中心,具有可比的效率。 HST初始化也可以扩展到差异隐私(DP)的设置,以生成私人初始中心。我们表明,应用DP本地搜索后,我们的私有HST初始化会改善对近似错误的先前结果,并在小因素内接近下限。实验证明了理论的合理性,并证明了我们提出的方法的有效性。我们的方法也可以扩展到$ k $ -MEANS问题。
translated by 谷歌翻译
我们介绍了$(p,q)$ - 公平集群问题。在这个问题中,我们给出了一组点数$ p $和不同重量函数的集合$ w $。我们想找到一个群集,最小化$ \ ell_q $ -norm的$ \ ell_p $-norm的$ \ ell_p $ -norms的$ p $从中心。这概括了各种聚类问题,包括社会博览会$ k $ -Median和$ k $ - emeans,并且与其他问题紧密相连,如Densest $ K $ -subgraph和Min $ K $ -Union。我们利用凸编程技术来估计$(p,q)$ - 为$ p $和$ q $的不同价值观达到公平的聚类问题。当$ p \ geq q $时,我们得到$ o(k ^ {(pq)/(2pq)})$,它几乎匹配$ k ^ {\ omega((pq)/(pq))} $低于基于Min $ K $ -Union和其他问题的猜想硬度的束缚。当$ q \ geq p $时,我们得到一个近似,它与界限$ p,q $的输入的大小无关,也与最近的$ o相匹配((\ log n /(\ log \ log n)) ^ {1 / p})$ - $(p,\ infty)$ - makarychev和vakilian(colt 2021)的公平聚类。
translated by 谷歌翻译
The k-means method is a widely used clustering technique that seeks to minimize the average squared distance between points in the same cluster. Although it offers no accuracy guarantees, its simplicity and speed are very appealing in practice. By augmenting k-means with a simple, randomized seeding technique, we obtain an algorithm that is O(log k)-competitive with the optimal clustering. Experiments show our augmentation improves both the speed and the accuracy of k-means, often quite dramatically.
translated by 谷歌翻译
最近的一些作品已经采用了决策树,以建造可解释的分区,旨在最大限度地减少$ k $ -means成本函数。然而,这些作品在很大程度上忽略了与所得到的树中叶子的深度相关的度量,这考虑到决策树的解释性如何取决于这些深度,这可能令人惊讶。为了填补文献中的这种差距,我们提出了一种有效的算法,它考虑了这些指标。在7个数据集上的实验中,我们的算法产生的结果比决策树聚类算法,例如\ Cite {dasgupta2020explainplainable},\ cite {frost2020exkmc},\ cite {laber2021price}和\ cite {dblp:conf / icml / Makarychevs21}通常以相当浅的树木实现较低或等同的成本。我们还通过简单适应现有技术来表明,用k $ -means成本函数的二叉树引起的可解释的分区的问题不承认多项式时间中的$(1+ \ epsilon)$ - 近似$ p = np $,证明Questies Quest attmation算法和/或启发式。
translated by 谷歌翻译
我们考虑在线无替代环境中的$ k $ - emeans集群,其中一个人必须在流媒体传输时立即拍摄每个数据点$ x_t $ x_t $。我们的作品专注于\ emph {任意订单}假设没有限制点数$ x $如何订购或生成。与最佳聚类成本相比,在其近似值中评估该设置中的算法,它们选择的中心数及其内存使用率。最近,Bhattacharjee和Moshkovitz(2020)定义了一个参数,$ lower _ {\ alpha,k}(x)$,它控制最小的中心数量的任何$ \ alpha $-xpruckatimation聚类算法,必须给予任何金额输入$ x $。为了补充结果,我们提供了第一个算法,它需要$ \ tilde {o}(下_ {\ alpha,k}(x))$中心(k,log n $)同时实现恒定近似除了保存中心所需的内存之外,还使用$ \ tilde {o}(k)$内存。我们的算法显示它在无替代设置中,可以在使用很少的额外内存时占用订单 - 最佳中心。
translated by 谷歌翻译
We introduce a sketch-and-solve approach to speed up the Peng-Wei semidefinite relaxation of k-means clustering. When the data is appropriately separated we identify the k-means optimal clustering. Otherwise, our approach provides a high-confidence lower bound on the optimal k-means value. This lower bound is data-driven; it does not make any assumption on the data nor how it is generated. We provide code and an extensive set of numerical experiments where we use this approach to certify approximate optimality of clustering solutions obtained by k-means++.
translated by 谷歌翻译
已经研究了分层群集,并广泛使用作为数据分析的方法。最近,Dasgupta [2016]定义了精确的目标函数。给定一套$ n $数据点,每两个项目$ w_ {i,j} $ w_ {i,j} $ i和$ j $表示他们的相似性/ dive相似性,目标是建立递归(树)将数据点(项目)分区成连续较小的簇。他定义了一棵树$ t $的成本函数为$ compt(t)= \ sum_ {i,j \在[n]} \ big(w_ {i,j} \ times | t_ {i,j} | \大)$ where $ t_ {i,j} $是subtree植根于$ i $和$ j $最不常见的祖先,并呈现了这种聚类的第一个近似算法。然后Moseley和Wang [2017]考虑了Dasgupta的双重目标函数,以适应性的重量,并显示出随机分区和平均连锁有近似比1/3 $的近似值为1/3美元,这一系列工程为0.585 $ [Alon等al。 2020]。后来Cohen-Addad等。 [2019]认为与Dasgupta的客观函数相同,但对于基于不同的基于指标,称为$ Rev(T)$。结果表明,随机分区和平均连锁有2/3美元的比例仅为0.667078 $ 0.667078 $ [Charikar等人。 SODA2020]。我们的第一个主要结果是考虑$ Rev(T)$,并提出更精致的算法和仔细分析,实现近似值0.71604 $。我们还为基于异化的聚类介绍了一个新的目标函数。对于任何树$ t $,让$ h_ {i,j} $是$ i $和$ j $的常见祖先的数量。直观地,预计相似的项目将在尽可能深处留在同一群体内。因此,对于基于不同的指标,我们建议每棵树$ t $的成本,我们想要最小化,是$ cost_h(t)= \ sum_ {i,j \在[n]} \ big(w_ {我,j} \ times h_ {i,j} \ big)$。我们为此目标提供1.3977美元的价值。
translated by 谷歌翻译
我们研究动态算法,以便在$ N $插入和删除流中最大化单调子模块功能的问题。我们显示任何维护$(0.5+ epsilon)$ - 在基数约束下的近似解决方案的算法,对于任何常数$ \ epsilon> 0 $,必须具有$ \ mathit {polynomial} $的摊销查询复杂性$ n $。此外,需要线性摊销查询复杂性,以维持0.584美元 - 批量的解决方案。这与近期[LMNF + 20,MON20]的最近动态算法相比,达到$(0.5- \ epsilon)$ - 近似值,与$ \ mathsf {poly} \ log(n)$摊销查询复杂性。在正面,当流是仅插入的时候,我们在基数约束下的问题和近似的Matroid约束下提供有效的算法,近似保证$ 1-1 / e-\ epsilon $和摊销查询复杂性$ \ smash {o (\ log(k / \ epsilon)/ \ epsilon ^ 2)} $和$ \ smash {k ^ {\ tilde {o}(1 / \ epsilon ^ 2)} \ log n} $,其中$ k $表示基数参数或Matroid的等级。
translated by 谷歌翻译
我们研究了清单可解放的平均估计问题,而对手可能会破坏大多数数据集。具体来说,我们在$ \ mathbb {r} ^ $和参数$ 0 <\ alpha <\ frac 1 2 $中给出了一个$ $ n $ points的$ t $ points。$ \ alpha $ -flaction的点$ t $是iid来自乖巧的分发$ \ Mathcal {D} $的样本,剩余的$(1- \ alpha)$ - 分数是任意的。目标是输出小型的vectors列表,其中至少一个接近$ \ mathcal {d} $的均值。我们开发新的算法,用于列出可解码的平均值估计,实现几乎最佳的统计保证,运行时间$ O(n ^ {1 + \ epsilon_0} d)$,适用于任何固定$ \ epsilon_0> 0 $。所有先前的此问题算法都有额外的多项式因素在$ \ frac 1 \ alpha $。我们与额外技术一起利用此结果,以获得用于聚类混合物的第一个近几个线性时间算法,用于分开的良好表现良好的分布,几乎匹配谱方法的统计保证。先前的聚类算法本身依赖于$ k $ -pca的应用程序,从而产生$ \ omega(n d k)$的运行时。这标志着近二十年来这个基本统计问题的第一次运行时间改进。我们的方法的起点是基于单次矩阵乘法权重激发电位减少的$ \ Alpha \至1 $制度中的新颖和更简单的近线性时间较强的估计算法。在Diakonikolas等人的迭代多滤波技术的背景下,我们迫切地利用了这种新的算法框架。 '18,'20,提供一种使用一维投影的同时群集和下群点的方法 - 因此,绕过先前算法所需的$ k $ -pca子程序。
translated by 谷歌翻译
K-means++ is an important algorithm to choose initial cluster centers for the k-means clustering algorithm. In this work, we present a new algorithm that can solve the $k$-means++ problem with near optimal running time. Given $n$ data points in $\mathbb{R}^d$, the current state-of-the-art algorithm runs in $\widetilde{O}(k )$ iterations, and each iteration takes $\widetilde{O}(nd k)$ time. The overall running time is thus $\widetilde{O}(n d k^2)$. We propose a new algorithm \textsc{FastKmeans++} that only takes in $\widetilde{O}(nd + nk^2)$ time, in total.
translated by 谷歌翻译
聚类是数据分析中的一个根本问题。在差别私有聚类中,目标是识别$ k $群集中心,而不披露各个数据点的信息。尽管研究进展显着,但问题抵制了实际解决方案。在这项工作中,我们的目的是提供简单的可实现的差异私有聚类算法,当数据“简单”时,提供实用程序,例如,当簇之间存在显着的分离时。我们提出了一个框架,允许我们将非私有聚类算法应用于简单的实例,并私下结合结果。在高斯混合的某些情况下,我们能够改善样本复杂性界限,并获得$ k $ -means。我们与合成数据的实证评估补充了我们的理论分析。
translated by 谷歌翻译