决策树是广泛使用的分类和回归模型,因为它们的解释性和良好的准确性。诸如购物车的经典方法基于贪婪的方法,但最近致力于最佳决策树的关注。我们研究了BlanQuero等人提出的非线性连续优化制剂。 (EJOR,Vol.284,2020; Cor,Vol.132,2021)(稀疏)最佳随机分类树。不仅适用于特征选择,还非常重要,而且还可以提高解释性。我们首先考虑基于$ l_ {0} $'norm“的凹形近似的替代方法来缩小这样的树木。与$ l_1 $和$ l _ {\ infty} $ scalalization,在24个数据集中获得了有希望的结果。然后,我们在多变量随机分类树的VC维度上获得界限。最后,由于培训是对大型数据集的计算挑战,我们提出了一般的分解方案和它的有效版本。在较大数据集上的实验表明,所提出的分解方法能够为了显着降低培训时间而不影响精度。
translated by 谷歌翻译