我们提出了一个卷积神经网络,该卷积神经网络共同检测了运动边界(MBS)和遮挡区域(OCC)的视频,两者在前向后和向后。检测很困难,因为光流沿MBS是不连续的,并且在OCC中未定义,而许多流量估计器假设光滑度和到处定义的流程。在同时在两个时间方向上推理,我们将估计的映射直接扭曲在两个框架之间。由于帧之间的外观经常在MBS或OV中信号附近,因此构造一个成本块,其为一帧中的每个特征记录在搜索范围内具有匹配的特征的最低差异。该成本块是二维的,并且比流动分析中使用的四维成本量便宜得多。成本块特征由编码器计算,MB和OCC估计由解码器计算。我们发现将解码器层布置精细到粗,而不是粗细,提高性能。 Monet以烧结和飞行电影基准测试的所有任务优于最先进的技术,而不会对它们进行任何微调。
translated by 谷歌翻译
基于深度学习的无监督光流估计器由于对地面真理的成本和难度而引起了越来越多的关注。尽管多年来通过平均终点误差(EPE)衡量的性能有所提高,但沿运动边界(MBS)的流量估计仍然较差,而流动不平稳,通常假定的流动不平滑,而神经网络计算的功能为多个动作污染。为了改善无监督的设置中的流量,我们设计了一个框架,该框架通过分析沿边界候选者的视觉变化来检测MB,并用更远的动作取代接近检测的动作。我们提出的算法比具有相同输入的基线方法更准确地检测边界,并且可以改善任何流动预测变量的估计值,而无需额外的训练。
translated by 谷歌翻译
我们提出了Tain(视频插值的变压器和注意力),这是一个用于视频插值的残留神经网络,旨在插入中间框架,并在其周围连续两个图像框架下进行插值。我们首先提出一个新型的视觉变压器模块,称为交叉相似性(CS),以与预测插值框架相似的外观相似的外观。然后,这些CS特征用于完善插值预测。为了说明CS功能中的遮挡,我们提出了一个图像注意(IA)模块,以使网络可以从另一个框架上关注CS功能。此外,我们还使用封闭式贴片来增强培训数据集,该补丁可以跨帧移动,以改善网络对遮挡和大型运动的稳健性。由于现有方法产生平滑的预测,尤其是在MB附近,因此我们根据图像梯度使用额外的训练损失来产生更清晰的预测。胜过不需要流量估计并与基于流程的方法相当执行的现有方法,同时在VIMEO90K,UCF101和SNU-FILM基准的推理时间上具有计算有效的效率。
translated by 谷歌翻译
光学流量估计是视频分析领域的一个重要而有挑战性问题。卷积神经网络的不同语义级别/层的特征可以提供不同粒度的信息。为了利用如此灵活和全面的信息,我们提出了一个半监督的特征金字塔形相关和残余重建网络(FPCR-Net),用于框架对的光学流量估计。它由两个主要模块组成:金字塔相关映射和剩余重建。金字塔相关映射模块利用全局/本地补丁的多尺度相关性来通过聚合不同尺度的特征来形成多级成本卷。剩余重建模块旨在重建每个阶段中更精细的光学流的子带高频残差。基于金字塔相关映射,我们进一步提出了相关 - 扭曲 - 归一化(CWN)模块,以有效地利用相关性依赖性。实验结果表明,该方案在针对竞争基线方法的平均终点误差(AEE)方面,实现了最先进的性能,改善了0.80,1.15和0.10 - Flownet2,LiteFlowNet和PWC-Net Sintel DataSet的最终通过。
translated by 谷歌翻译
We present a compact but effective CNN model for optical flow, called PWC-Net. PWC-Net has been designed according to simple and well-established principles: pyramidal processing, warping, and the use of a cost volume. Cast in a learnable feature pyramid, PWC-Net uses the current optical flow estimate to warp the CNN features of the second image. It then uses the warped features and features of the first image to construct a cost volume, which is processed by a CNN to estimate the optical flow. PWC-Net is 17 times smaller in size and easier to train than the recent FlowNet2 model. Moreover, it outperforms all published optical flow methods on the MPI Sintel final pass and KITTI 2015 benchmarks, running at about 35 fps on Sintel resolution (1024×436) images. Our models are available on https://github.com/NVlabs/PWC-Net.
translated by 谷歌翻译
我们提出了一种称为基于DNN的基于DNN的框架,称为基于增强的相关匹配的视频帧插值网络,以支持4K的高分辨率,其具有大规模的运动和遮挡。考虑到根据分辨率的网络模型的可扩展性,所提出的方案采用经常性金字塔架构,该架构分享每个金字塔层之间的参数进行光学流量估计。在所提出的流程估计中,通过追踪具有最大相关性的位置来递归地改进光学流。基于前扭曲的相关匹配可以通过排除遮挡区域周围的错误扭曲特征来提高流量更新的准确性。基于最终双向流动,使用翘曲和混合网络合成任意时间位置的中间帧,通过细化网络进一步改善。实验结果表明,所提出的方案在4K视频数据和低分辨率基准数据集中占据了之前的工作,以及具有最小型号参数的客观和主观质量。
translated by 谷歌翻译
Given two consecutive frames, video interpolation aims at generating intermediate frame(s) to form both spatially and temporally coherent video sequences. While most existing methods focus on single-frame interpolation, we propose an end-to-end convolutional neural network for variable-length multi-frame video interpolation, where the motion interpretation and occlusion reasoning are jointly modeled. We start by computing bi-directional optical flow between the input images using a U-Net architecture. These flows are then linearly combined at each time step to approximate the intermediate bi-directional optical flows. These approximate flows, however, only work well in locally smooth regions and produce artifacts around motion boundaries. To address this shortcoming, we employ another U-Net to refine the approximated flow and also predict soft visibility maps. Finally, the two input images are warped and linearly fused to form each intermediate frame. By applying the visibility maps to the warped images before fusion, we exclude the contribution of occluded pixels to the interpolated intermediate frame to avoid artifacts. Since none of our learned network parameters are time-dependent, our approach is able to produce as many intermediate frames as needed. To train our network, we use 1,132 240-fps video clips, containing 300K individual video frames. Experimental results on several datasets, predicting different numbers of interpolated frames, demonstrate that our approach performs consistently better than existing methods.
translated by 谷歌翻译
Convolutional neural networks (CNNs) have recently been very successful in a variety of computer vision tasks, especially on those linked to recognition. Optical flow estimation has not been among the tasks where CNNs were successful. In this paper we construct appropriate CNNs which are capable of solving the optical flow estimation problem as a supervised learning task. We propose and compare two architectures: a generic architecture and another one including a layer that correlates feature vectors at different image locations.Since existing ground truth datasets are not sufficiently large to train a CNN, we generate a synthetic Flying Chairs dataset. We show that networks trained on this unrealistic data still generalize very well to existing datasets such as Sintel and KITTI, achieving competitive accuracy at frame rates of 5 to 10 fps.
translated by 谷歌翻译
在本文中,我们提出了USEGSCENE,该框架用于使用卷积神经网络对立体声相机图像的深度,光流和自我感动的无监督学习。我们的框架利用语义信息来改善深度和光流图的正则化,多模式融合和遮挡填充考虑动态刚性对象运动作为独立的SE(3)转换。此外,我们与纯照相匹配匹配互补,我们提出了连续图像之间语义特征,像素类别和对象实例边界的匹配。与以前的方法相反,我们提出了一个网络体系结构,该网络体系结构可以使用共享编码器共同预测所有输出,并允许在任务域上传递信息,例如,光流的预测可以从深度的预测中受益。此外,我们明确地了解网络内部的深度和光流遮挡图,这些图被利用,以改善这些区域的预测。我们在流行的Kitti数据集上介绍了结果,并表明我们的方法以大幅度的优于其他方法。
translated by 谷歌翻译
可以通过定期预测未来的框架以增强虚拟现实应用程序中的用户体验,从而解决了低计算设备上图形渲染高帧速率视频的挑战。这是通过时间视图合成(TVS)的问题来研究的,该问题的目标是预测给定上一个帧的视频的下一个帧以及上一个和下一个帧的头部姿势。在这项工作中,我们考虑了用户和对象正在移动的动态场景的电视。我们设计了一个将运动解散到用户和对象运动中的框架,以在预测下一帧的同时有效地使用可用的用户运动。我们通过隔离和估计过去框架的3D对象运动,然后推断它来预测对象的运动。我们使用多平面图像(MPI)作为场景的3D表示,并将对象运动作为MPI表示中相应点之间的3D位移建模。为了在估计运动时处理MPI中的稀疏性,我们将部分卷积和掩盖的相关层纳入了相应的点。然后将预测的对象运动与给定的用户或相机运动集成在一起,以生成下一帧。使用不合格的填充模块,我们合成由于相机和对象运动而发现的区域。我们为动态场景的电视开发了一个新的合成数据集,该数据集由800个以全高清分辨率组成的视频组成。我们通过数据集和MPI Sintel数据集上的实验表明我们的模型优于文献中的所有竞争方法。
translated by 谷歌翻译
We introduce Recurrent All-Pairs Field Transforms (RAFT), a new deep network architecture for optical flow. RAFT extracts perpixel features, builds multi-scale 4D correlation volumes for all pairs of pixels, and iteratively updates a flow field through a recurrent unit that performs lookups on the correlation volumes. RAFT achieves stateof-the-art performance. On KITTI, RAFT achieves an F1-all error of 5.10%, a 16% error reduction from the best published result (6.10%). On Sintel (final pass), RAFT obtains an end-point-error of 2.855 pixels, a 30% error reduction from the best published result (4.098 pixels). In addition, RAFT has strong cross-dataset generalization as well as high efficiency in inference time, training speed, and parameter count. Code is available at https://github.com/princeton-vl/RAFT.
translated by 谷歌翻译
We learn to compute optical flow by combining a classical spatial-pyramid formulation with deep learning. This estimates large motions in a coarse-to-fine approach by warping one image of a pair at each pyramid level by the current flow estimate and computing an update to the flow. Instead of the standard minimization of an objective function at each pyramid level, we train one deep network per level to compute the flow update. Unlike the recent FlowNet approach, the networks do not need to deal with large motions; these are dealt with by the pyramid. This has several advantages. First, our Spatial Pyramid Network (SPyNet) is much simpler and 96% smaller than FlowNet in terms of model parameters. This makes it more efficient and appropriate for embedded applications. Second, since the flow at each pyramid level is small (< 1 pixel), a convolutional approach applied to pairs of warped images is appropriate. Third, unlike FlowNet, the learned convolution filters appear similar to classical spatio-temporal filters, giving insight into the method and how to improve it. Our results are more accurate than FlowNet on most standard benchmarks, suggesting a new direction of combining classical flow methods with deep learning.1 This, of course, has well-known limitations, which we discuss later.
translated by 谷歌翻译
The FlowNet demonstrated that optical flow estimation can be cast as a learning problem. However, the state of the art with regard to the quality of the flow has still been defined by traditional methods. Particularly on small displacements and real-world data, FlowNet cannot compete with variational methods. In this paper, we advance the concept of end-to-end learning of optical flow and make it work really well. The large improvements in quality and speed are caused by three major contributions: first, we focus on the training data and show that the schedule of presenting data during training is very important. Second, we develop a stacked architecture that includes warping of the second image with intermediate optical flow. Third, we elaborate on small displacements by introducing a subnetwork specializing on small motions. FlowNet 2.0 is only marginally slower than the original FlowNet but decreases the estimation error by more than 50%. It performs on par with state-of-the-art methods, while running at interactive frame rates. Moreover, we present faster variants that allow optical flow computation at up to 140fps with accuracy matching the original FlowNet.
translated by 谷歌翻译
我们提出了一种用于视频帧插值(VFI)的实时中流估计算法。许多最近的基于流的VFI方法首先估计双向光学流,然后缩放并将它们倒转到近似中间流动,导致运动边界上的伪像。RIFE使用名为IFNET的神经网络,可以直接估计中间流量从粗细流,速度更好。我们设计了一种用于训练中间流动模型的特权蒸馏方案,这导致了大的性能改善。Rife不依赖于预先训练的光流模型,可以支持任意时间的帧插值。实验表明,普里埃雷在若干公共基准上实现了最先进的表现。\ url {https://github.com/hzwer/arxiv2020-rife}。
translated by 谷歌翻译
我们为基于运动的视频框架插值提供了一种新颖的简单而有效的算法。现有的基于运动的插值方法通常依赖于预先训练的光流模型或基于U-NET的金字塔网络进行运动估计,该运动估计要么具有较大的模型大小或有限的处理复合物和大型运动案例的容量。在这项工作中,通过仔细整合了中间方向的前射击,轻质特征编码器和相关量为金字塔复发框架,我们得出一个紧凑的模型,以同时估计输入帧之间的双向运动。它的尺寸比PWC-NET小15倍,但可以更可靠,更灵活地处理具有挑战性的运动案例。基于估计的双向运动,我们向前射击输入帧及其上下文特征到中间帧,并采用合成网络来估算扭曲表示的中间帧。我们的方法在广泛的视频框架插值基准测试中实现了出色的性能。代码将很快可用。
translated by 谷歌翻译
Recent work has shown that optical flow estimation can be formulated as a supervised learning task and can be successfully solved with convolutional networks. Training of the so-called FlowNet was enabled by a large synthetically generated dataset. The present paper extends the concept of optical flow estimation via convolutional networks to disparity and scene flow estimation. To this end, we propose three synthetic stereo video datasets with sufficient realism, variation, and size to successfully train large networks. Our datasets are the first large-scale datasets to enable training and evaluating scene flow methods. Besides the datasets, we present a convolutional network for real-time disparity estimation that provides state-of-the-art results. By combining a flow and disparity estimation network and training it jointly, we demonstrate the first scene flow estimation with a convolutional network.
translated by 谷歌翻译
本文的目的是一个模型,能够在视频中发现,跟踪和细分多个移动对象。我们做出四个贡献:首先,我们引入了一个以对象为中心的分段模型,具有深度订购的层表示。这是使用摄入光流的变压器体系结构的变体来实现的,每个查询向量为整个视频指定对象及其层。该模型可以有效地发现多个移动对象并处理相互阻塞。其次,我们引入了一条可扩展的管道,用于生成具有多个对象的合成训练数据,从而大大降低了对劳动密集型注释的要求,并支持SIM2REAL概括;第三,我们表明该模型能够学习对象的持久性和时间形状的一致性,并能够预测Amodal分割掩码。第四,我们评估了标准视频细分基准测试模型,戴维斯,MOCA,SEGTRACK,FBMS-59,并实现最新的无监督分割性能,甚至优于几种监督方法。通过测试时间适应,我们观察到进一步的性能提高。
translated by 谷歌翻译
Many video enhancement algorithms rely on optical flow to register frames in a video sequence. Precise flow estimation is however intractable; and optical flow itself is often a sub-optimal representation for particular video processing tasks. In this paper, we propose task-oriented flow (TOFlow), a motion representation learned in a selfsupervised, task-specific manner. We design a neural network with a trainable motion estimation component and a video processing component, and train them jointly to learn the task-oriented flow. For evaluation, we build Vimeo-90K, a large-scale, high-quality video dataset for low-level video processing. TOFlow outperforms traditional optical flow on standard benchmarks as well as our Vimeo-90K dataset in three video processing tasks: frame interpolation, video denoising/deblocking, and video super-resolution. IntroductionMotion estimation is a key component in video processing tasks such as temporal frame interpolation, video denoising,
translated by 谷歌翻译
通常将视频中的跟踪像素作为光流估计问题进行研究,其中每个像素都用位移向量描述,该位移向量将其定位在下一帧中。即使可以免费获得更广泛的时间上下文,但要考虑到这一点的事先努力仅在2框方法上产生了少量收益。在本文中,我们重新访问Sand and Teller的“粒子视频”方法,并将像素跟踪作为远程运动估计问题,其中每个像素都用轨迹描述,该轨迹将其定位在以后的多个帧中。我们使用该组件重新构建了这种经典方法,这些组件可以驱动流量和对象跟踪中最新的最新方法,例如密集的成本图,迭代优化和学习的外观更新。我们使用从现有的光流数据中挖掘出的远程Amodal点轨迹来训练我们的模型,并通过多帧的遮挡合成增强,这些轨迹会增强。我们在轨迹估计基准和关键点标签传播任务中测试我们的方法,并与最新的光流和功能跟踪方法进行比较。
translated by 谷歌翻译
现有的基于深度学习的无监督视频对象分割方法仍依靠地面真实的细分面具来训练。在这种情况下令人未知的意味着在推理期间没有使用注释帧。由于获得真实图像场景的地面真实的细分掩码是一种艰苦的任务,我们想到了一个简单的框架,即占主导地位的移动对象分割,既不需要注释数据训练,也不依赖于显着的电视或预先训练的光流程图。灵感来自分层图像表示,我们根据仿射参数运动引入对像素区域进行分组的技术。这使我们的网络能够仅使用RGB图像对为培训和推理的输入来学习主要前景对象的分割。我们使用新的MOVERCARS DataSet为这项新颖任务建立了基线,并对最近的方法表现出竞争性能,这些方法需要培训带有注释面具的最新方法。
translated by 谷歌翻译