异常检测的隔离林算法利用一个简单但有效的观察:如果携带一些多变量数据并递归地在特征空间上进行均匀随机切割,则相比,将在给定子空间中单独留下更少的随机剪辑定期观察。原始想法提出了基于树的深度(随机剪切数量)的异常值,但这里的实验表明,使用有关所拍摄的特征空间大小的信息和分配给它的点数可能导致结果改进在许多情况下没有任何修改树结构,尤其是在存在分类特征的情况下。
translated by 谷歌翻译
隔离林或“IFOREST”是一种直观且广泛使用的异常检测算法,其遵循一个简单而有效的想法:在给定的数据分布中,如果在某种变量和数据的范围内随机地均匀选择阈值(分割点)根据它们是否更大或小于此阈值,异常值更可能在较小的分区中最终或较小分区划分点。原始程序建议选择变量以在每个步骤中随机均匀地完成变量的变量,但本文表明“集群化”不同的异常值 - 通常比其他人更有趣的异常值 - 可以更多通过应用非均匀 - 随机的变量和/或阈值来容易地识别。比较不同的分割指导标准,发现一些结果导致某些异常值的明显差异更好。
translated by 谷歌翻译
We combine the metrics of distance and isolation to develop the \textit{Analytic Isolation and Distance-based Anomaly (AIDA) detection algorithm}. AIDA is the first distance-based method that does not rely on the concept of nearest-neighbours, making it a parameter-free model. Differently from the prevailing literature, in which the isolation metric is always computed via simulations, we show that AIDA admits an analytical expression for the outlier score, providing new insights into the isolation metric. Additionally, we present an anomaly explanation method based on AIDA, the \textit{Tempered Isolation-based eXplanation (TIX)} algorithm, which finds the most relevant outlier features even in data sets with hundreds of dimensions. We test both algorithms on synthetic and empirical data: we show that AIDA is competitive when compared to other state-of-the-art methods, and it is superior in finding outliers hidden in multidimensional feature subspaces. Finally, we illustrate how the TIX algorithm is able to find outliers in multidimensional feature subspaces, and use these explanations to analyze common benchmarks used in anomaly detection.
translated by 谷歌翻译
该行业许多领域的自动化越来越多地要求为检测异常事件设计有效的机器学习解决方案。随着传感器的普遍存在传感器监测几乎连续地区的复杂基础设施的健康,异常检测现在可以依赖于以非常高的频率进行采样的测量,从而提供了在监视下的现象的非常丰富的代表性。为了充分利用如此收集的信息,观察不能再被视为多变量数据,并且需要一个功能分析方法。本文的目的是探讨近期对实际数据集的功能设置中异常检测技术的性能。在概述最先进的和视觉描述性研究之后,比较各种异常检测方法。虽然功能设置中的异常分类(例如,形状,位置)在文献中记录,但为所识别的异常分配特定类型似乎是一个具有挑战性的任务。因此,鉴于模拟研究中的这些突出显示类型,现有方法的强度和弱点是基准测试。接下来在两个数据集上评估异常检测方法,与飞行中的直升机监测和建筑材料的光谱相同有关。基准分析由从业者的建议指导结束。
translated by 谷歌翻译
流媒体数据中对异常的实时检测正在受到越来越多的关注,因为它使我们能够提高警报,预测故障并检测到整个行业的入侵或威胁。然而,很少有人注意比较流媒体数据(即在线算法)的异常检测器的有效性和效率。在本文中,我们介绍了来自不同算法家族(即基于距离,密度,树木或投影)的主要在线检测器的定性合成概述,并突出了其构建,更新和测试检测模型的主要思想。然后,我们对在线检测算法的定量实验评估以及其离线对应物进行了彻底的分析。检测器的行为与不同数据集(即元功能)的特征相关,从而提供了对其性能的元级分析。我们的研究介绍了文献中几个缺失的见解,例如(a)检测器对随机分类器的可靠性以及什么数据集特性使它们随机执行; (b)在线探测器在何种程度上近似离线同行的性能; (c)哪种绘制检测器的策略和更新原始图最适合检测仅在数据集的功能子空间中可见的异常; (d)属于不同算法家族的探测器的有效性与效率之间的权衡是什么; (e)数据集的哪些特定特征产生在线算法以胜过所有其他特征。
translated by 谷歌翻译
无监督的异常检测解决了在没有标签可用性的情况下发现数据集内的异常问题的问题;由于数据标记通常很难或获得昂贵,因此近年来这些方法已经看到了巨大的适用性。在这种情况下,隔离森林是一种流行的算法,可以通过称为隔离树的独特树的集合来定义异常分数。这些是使用无规分区过程构建,这些程序非常快捷,廉价培训。但是,我们发现标准算法可以在内存要求,延迟和性能方面提高;这对低资源场景和在超约束微处理器上的Tinyml实现中特别重要。此外,异常检测方法目前没有利用弱势监督:通常在决策支持系统中消耗,用户来自用户的反馈,即使罕见,也可以是目前未探索的有价值的信息来源。除了展示IFOSEST培训限制外,我们在此提出TIWS-IFOREST,一种方法,即通过利用弱监管能够降低隔离森林复杂性并提高检测性能。我们展示了TIWS-IFOREST在真实单词数据集上的有效性,我们在公共存储库中共享代码,以增强可重复性。
translated by 谷歌翻译
在许多应用程序中,检测异常行为是新兴的需求,尤其是在安全性和可靠性是关键方面的情况下。尽管对异常的定义严格取决于域框架,但它通常是不切实际的或太耗时的,无法获得完全标记的数据集。使用无监督模型来克服缺乏标签的模型通常无法捕获特定的特定异常情况,因为它们依赖于异常值的一般定义。本文提出了一种新的基于积极学习的方法Alif,以通过减少所需标签的数量并将检测器调整为用户提供的异常的定义来解决此问题。在存在决策支持系统(DSS)的情况下,提出的方法特别有吸引力,这种情况在现实世界中越来越流行。尽管常见的DSS嵌入异常检测功能取决于无监督的模型,但它们没有办法提高性能:Alif能够通过在常见操作期间利用用户反馈来增强DSS的功能。 Alif是对流行的隔离森林的轻巧修改,在许多真实的异常检测数据集中,相对于其他最先进的算法证明了相对于其他最先进算法的出色性能。
translated by 谷歌翻译
异常的可视化和检测异常(异常值)对许多领域,特别是网络安全的重要性至关重要。在这些领域提出了几种方法,但我们的知识迄今为止,它们都不是在一个相干框架中同时或合作地满足了两个目标。引入了这些方法的可视化方法,用于解释检测算法的输出,而不是用于促进独立视觉检测的数据探测。这是我们的出发点:未经避免,不审视和非分析方法,对Vission(人类流程)和检测(算法)的异常值,分配不变的异常分数(标准化为$ [0,1] $) ,而不是硬二元决定。 Novely的新颖性的主要方面是它将数据转换为新的空间,该空间是在本文中引入的作为邻域累积密度函数(NCDF),其中进行了可视化和检测。在该空间中,异常值非常明显可区分,因此检测算法分配的异常分数在ROC曲线(AUC)下实现了高区域。我们在模拟和最近公布的网络安全数据集中评估了不避免,并将其与其中的三种最成功的异常检测方法进行比较:LOF,IF和FABOD。就AUC而言,不避免几乎是整体胜利者。这篇文章通过提供了对未避免的新理论和实际途径的预测来了解。其中包括设计一种可视化辅助异常检测(Vaad),一种软件通过提供不避免的检测算法(在后发动机中运行),NCDF可视化空间(呈现为绘图)以及其他传统方法在原始特征空间中的可视化,所有这些都在一个交互环境中链接。
translated by 谷歌翻译
孤立森林(Iforest)近年来已经成为最受欢迎的异常检测器。它迭代地在树结构中执行轴平行的数据空间分区,以将偏差的数据对象与其他数据隔离,并且定义为异常得分的对象的隔离难度。 iForest在流行的数据集基准中显示出有效的性能,但其基于轴平行的线性数据分区无效地处理高维/非线性数据空间中的硬异常,甚至更糟糕的是,它导致了臭名昭著的算法偏见。为人工制品区域分配了出乎意料的较大的异常得分。有几个扩展的Iforest,但它们仍然专注于线性数据分区,无法有效地隔离这些硬异常。本文介绍了iforest,深层隔离森林的新型扩展。我们的方法提供了一种综合的隔离方法,可以在任何大小的子空间上任意将数据任意划分数据,从而有效地避免了线性分区中的算法偏置。此外,它仅需要随机初始化的神经网络(即,我们的方法中不需要优化)来确保分区的自由。这样一来,可以完全利用基于网络的随机表示和基于随机分区的隔离的所需随机性和多样性,以显着增强基于隔离集合的异常检测。此外,我们的方法还提供了数据型 - 敏捷的异常检测解决方案。通过简单地插入功能映射中的随机初始化的神经网络来检测不同类型数据中的异常。大量现实数据集的广泛经验结果表明,我们的模型对基于最新的隔离和基于非异常的异常检测模型有了显着改善。
translated by 谷歌翻译
考虑一个结构化的特征数据集,例如$ \ {\ textrm {sex},\ textrm {compy},\ textrm {race},\ textrm {shore} \} $。用户可能希望在特征空间观测中集中在哪里,并且它稀疏或空的位置。大稀疏或空区域的存在可以提供软或硬特征约束的域知识(例如,典型的收入范围是什么,或者在几年的工作经验中可能不太可能拥有高收入)。此外,这些可以建议用户对稀疏或空区域中的数据输入的机器学习(ML)模型预测可能是不可靠的。可解释的区域是一个超矩形,例如$ \ {\ textrm {rame} \ in \ {\ textrm {black},\ textrm {white} \} \} \} \&$ $ \ {10 \ leq \ :\ textrm {体验} \:\ leq 13 \} $,包含满足约束的所有观察;通常,这些区域由少量特征定义。我们的方法构造了在数据集中观察到的特征空间的基于观察密度的分区。它与其他人具有许多优点,因为它适用于原始域中的混合类型(数字或分类)的特征,也可以分开空区域。从可视化可以看出,所产生的分区符合人眼可能识别的空间分组;因此,结果应延伸到更高的尺寸。我们还向其他数据分析任务展示了一些应用程序,例如推断M1模型误差,测量高尺寸密度可变性以及治疗效果的因果推理。通过分区区域的超矩形形式可以实现许多这些应用。
translated by 谷歌翻译
异常和异常值检测是机器学习中的长期问题。在某些情况下,异常检测容易,例如当从诸如高斯的良好特征的分布中抽出数据时。但是,当数据占据高维空间时,异常检测变得更加困难。我们呈现蛤蜊(聚类学习近似歧管),是任何度量空间中的歧管映射技术。 CLAM以快速分层聚类技术开始,然后根据使用多个几何和拓扑功能所选择的重叠群集,从群集树中引导图表。使用这些图形,我们实现了Chaoda(群集分层异常和异常值检测算法),探索了图形的各种属性及其组成集群以查找异常值。 Chaoda采用了一种基于培训数据集的转移学习形式,并将这些知识应用于不同基数,维度和域的单独测试集。在24个公开可用的数据集上,我们将Chaoda(按衡量ROC AUC)与各种最先进的无监督异常检测算法进行比较。六个数据集用于培训。 Chaoda优于16个剩余的18个数据集的其他方法。 CLAM和Chaoda规模大,高维“大数据”异常检测问题,并贯穿数据集和距离函数。克拉姆和Chaoda的源代码在github上自由地提供https://github.com/uri-abd/clam。
translated by 谷歌翻译
Isolation forest
分类:
Most existing model-based approaches to anomaly detection construct a profile of normal instances, then identify instances that do not conform to the normal profile as anomalies. This paper proposes a fundamentally different model-based method that explicitly isolates anomalies instead of profiles normal points. To our best knowledge, the concept of isolation has not been explored in current literature. The use of isolation enables the proposed method, iForest, to exploit sub-sampling to an extent that is not feasible in existing methods, creating an algorithm which has a linear time complexity with a low constant and a low memory requirement. Our empirical evaluation shows that iForest performs favourably to ORCA, a near-linear time complexity distance-based method, LOF and Random Forests in terms of AUC and processing time, and especially in large data sets. iForest also works well in high dimensional problems which have a large number of irrelevant attributes, and in situations where training set does not contain any anomalies.
translated by 谷歌翻译
在M维数据点的云中,我们将如何发现,以及排名,单点和群体 - 异常?我们是第一个概括了两个维度的异常检测:第一维度是我们在统一的观点下处理点异常,以及组异常 - 我们将把它们称为广义异常。第二维度不仅可以检测到,而且还可以在可疑顺序中排名,但也排名,异常。异常检测和排名具有许多应用:例如,在癫痫患者的脑电图中,异常可能表明癫痫发作;在计算机网络流量数据中,它可能表示电源故障或DOS / DDOS攻击。我们首先设置一些合理的公理;令人惊讶的是,早期的方法都没有通过所有公理。我们的主要贡献是Gen2Out算法,具有以下理想的性质:(a)所指的原理和声音异常评分,使得探测器的公理组合,(b)倍增,在其检测到,以及排名的级别点和组异常,(c)可扩展,它是快速且可伸缩的,线性输入大小。 (d)有效,关于现实世界癫痫记录(200GB)的实验证明了临床医生证实Gen2Out的有效性。在27个现实世界基准数据集上的实验表明,GEN2OUT检测到准确性的地面真理组,匹配或优于点异常基线基线算法,没有对组异常的竞争,并且在储运机上需要大约2分钟的数据点。
translated by 谷歌翻译
The detection of anomalies in time series data is crucial in a wide range of applications, such as system monitoring, health care or cyber security. While the vast number of available methods makes selecting the right method for a certain application hard enough, different methods have different strengths, e.g. regarding the type of anomalies they are able to find. In this work, we compare six unsupervised anomaly detection methods with different complexities to answer the questions: Are the more complex methods usually performing better? And are there specific anomaly types that those method are tailored to? The comparison is done on the UCR anomaly archive, a recent benchmark dataset for anomaly detection. We compare the six methods by analyzing the experimental results on a dataset- and anomaly type level after tuning the necessary hyperparameter for each method. Additionally we examine the ability of individual methods to incorporate prior knowledge about the anomalies and analyse the differences of point-wise and sequence wise features. We show with broad experiments, that the classical machine learning methods show a superior performance compared to the deep learning methods across a wide range of anomaly types.
translated by 谷歌翻译
This paper proposes a new tree-based ensemble method for supervised classification and regression problems. It essentially consists of randomizing strongly both attribute and cut-point choice while splitting a tree node. In the extreme case, it builds totally randomized trees whose structures are independent of the output values of the learning sample. The strength of the randomization can be tuned to problem specifics by the appropriate choice of a parameter. We evaluate the robustness of the default choice of this parameter, and we also provide insight on how to adjust it in particular situations. Besides accuracy, the main strength of the resulting algorithm is computational efficiency. A bias/variance analysis of the Extra-Trees algorithm is also provided as well as a geometrical and a kernel characterization of the models induced.
translated by 谷歌翻译
异常检测涉及识别不符合预期行为的数据集中的示例。虽然存在大量的异常检测算法,但是已经支付了很少的注意,以解释这些算法标志某些示例作为异常的原因。然而,这样的解释对于解释算法输出的任何人来说可能非常有用。本文开发了一种解释最先进的隔离森林异常检测算法的异常预测的方法。该方法输出解释载体,该解释矢量捕获示例的每个属性的重要性是如何将其识别为异常。合成和现实世界数据集的彻底实验评估表明,我们的方法比大多数现代最先进的解释性方法更准确,更有效。
translated by 谷歌翻译
We review clustering as an analysis tool and the underlying concepts from an introductory perspective. What is clustering and how can clusterings be realised programmatically? How can data be represented and prepared for a clustering task? And how can clustering results be validated? Connectivity-based versus prototype-based approaches are reflected in the context of several popular methods: single-linkage, spectral embedding, k-means, and Gaussian mixtures are discussed as well as the density-based protocols (H)DBSCAN, Jarvis-Patrick, CommonNN, and density-peaks.
translated by 谷歌翻译
我们查看模型可解释性的特定方面:模型通常需要限制在大小上才能被认为是可解释的,例如,深度5的决策树比深度50中的一个更容易解释。但是,较小的模型也倾向于高偏见。这表明可解释性和准确性之间的权衡。我们提出了一种模型不可知论技术,以最大程度地减少这种权衡。我们的策略是首先学习甲骨文,这是培训数据上高度准确的概率模型。 Oracle预测的不确定性用于学习培训数据的抽样分布。然后,对使用此分布获得的数据样本进行了可解释的模型,通常会导致精确度明显更高。我们将抽样策略作为优化问题。我们的解决方案1具有以下关键的有利属性:(1)它使用固定数量的七个优化变量,而与数据的维度(2)无关,它是模型不可知的 - 因为可解释的模型和甲骨文都可能属于任意性模型家族(3)它具有模型大小的灵活概念,并且可以容纳向量大小(4)它是一个框架,使其能够从优化领域的进度中受益。我们还提出了以下有趣的观察结果:(a)通常,小型模型大小的最佳训练分布与测试分布不同; (b)即使可解释的模型和甲骨文来自高度截然不同的模型家族,也存在这种效果:我们通过使用封闭的复发单位网络作为甲骨文来提高决策树的序列分类精度,从而在文本分类任务上显示此效果。使用字符n-grams; (c)对于模型,我们的技术可用于确定给定样本量的最佳训练样本。
translated by 谷歌翻译
树合奏方法如随机森林[Breiman,2001]非常受欢迎,以处理高维表格数据集,特别是因为它们的预测精度良好。然而,当机器学习用于决策问题时,由于开明的决策需要对算法预测过程的深入理解来实现最佳预测程序的解决可能是不合理的。不幸的是,由于他们的预测结果从平均数百个决策树的预测结果,随机森林并不是本质上可解释的。在这种所谓的黑盒算法上获得知识的经典方法是计算可变重要性,这些重点是评估每个输入变量的预测影响。然后使用可变重要性对等变量进行排名或选择变量,从而在数据分析中发挥着重要作用。然而,没有理由使用随机森林变量以这种方式:我们甚至不知道这些数量估计。在本文中,我们分析了两个众所周知的随机森林可变重大之一,平均减少杂质(MDI)。我们证明,如果输入变量是独立的并且在没有相互作用的情况下,MDI提供了输出的方差分解,其中清楚地识别了每个变量的贡献。我们还研究表现出输入变量或交互之间的依赖性的模型,其中变量重要性本质上是不明的。我们的分析表明,与一棵树相比,可能存在使用森林的一些好处。
translated by 谷歌翻译
Function estimation/approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepestdescent minimization. A general gradient descent "boosting" paradigm is developed for additive expansions based on any fitting criterion. Specific algorithms are presented for least-squares, least absolute deviation, and Huber-M loss functions for regression, and multiclass logistic likelihood for classification. Special enhancements are derived for the particular case where the individual additive components are regression trees, and tools for interpreting such "TreeBoost" models are presented. Gradient boosting of regression trees produces competitive, highly robust, interpretable procedures for both regression and classification, especially appropriate for mining less than clean data. Connections between this approach and the boosting methods of Freund and Shapire and Friedman, Hastie and Tibshirani are discussed.
translated by 谷歌翻译