在不同的持续学习场景中可以经验经验评估模型的能力。每种情况都定义了限制和学习环境的机会。在这里,我们挑战了持续学习文学中的当前趋势,主要是在类渐进式场景上进行实验,其中一项经验中的课程从未被重新审视。我们对这种环境的过度注重可能是对持续学习的未来研究来限制,因为类增量场景人为地加剧了灾难性的遗忘,以牺牲其他重要目标等于前向传递和计算效率。在许多现实世界环境中,实际上,重复先前遇到的概念自然地发生,有助于软化对先前知识的破坏。我们倡导更深入地研究替代持续学习场景,其中重复通过传入信息流中的设计集成。从已经现有的提案开始,我们描述了这种级别的级别与重复方案的优势可以提供更全面的持续学习模型的评估。
translated by 谷歌翻译
时间序列数据的持续学习(CL)代表了现实世界应用的有希望但知之甚少的途径。我们为人类国家监测提出了两个新的CLENG基准。我们仔细设计了基准,以反映现实世界中的环境,其中不断添加新主题。我们进行了经验评估,以评估流行策略减轻基准中遗忘的能力。我们的结果表明,可能由于我们的基准的领域收入属性,即使使用简单的填充也可以轻松解决忘记,并且现有的策略在积累固定,固定的,测试的主题上积累知识而挣扎。
translated by 谷歌翻译
经典的机器学习算法通常假设绘制数据是i.i.d的。来自固定概率分布。最近,持续学习成为机器学习的快速增长领域,在该领域中,该假设放松,即数据分布是非平稳的,并且随着时间的推移而变化。本文通过上下文变量$ c $表示数据分布的状态。 $ c $的漂移导致数据分布漂移。上下文漂移可能会改变目标分布,输入分布或两者兼而有之。此外,分布漂移可能是突然的或逐渐的。在持续学习中,环境漂移可能会干扰学习过程并擦除以前学习的知识。因此,持续学习算法必须包括处理此类漂移的专业机制。在本文中,我们旨在识别和分类不同类型的上下文漂移和潜在的假设,以更好地表征各种持续学习的场景。此外,我们建议使用分布漂移框架来提供对连续学习领域常用的几个术语的更精确的定义。
translated by 谷歌翻译
Continual Learning (CL) is a field dedicated to devise algorithms able to achieve lifelong learning. Overcoming the knowledge disruption of previously acquired concepts, a drawback affecting deep learning models and that goes by the name of catastrophic forgetting, is a hard challenge. Currently, deep learning methods can attain impressive results when the data modeled does not undergo a considerable distributional shift in subsequent learning sessions, but whenever we expose such systems to this incremental setting, performance drop very quickly. Overcoming this limitation is fundamental as it would allow us to build truly intelligent systems showing stability and plasticity. Secondly, it would allow us to overcome the onerous limitation of retraining these architectures from scratch with the new updated data. In this thesis, we tackle the problem from multiple directions. In a first study, we show that in rehearsal-based techniques (systems that use memory buffer), the quantity of data stored in the rehearsal buffer is a more important factor over the quality of the data. Secondly, we propose one of the early works of incremental learning on ViTs architectures, comparing functional, weight and attention regularization approaches and propose effective novel a novel asymmetric loss. At the end we conclude with a study on pretraining and how it affects the performance in Continual Learning, raising some questions about the effective progression of the field. We then conclude with some future directions and closing remarks.
translated by 谷歌翻译
人类和其他动物的先天能力学习多样化,经常干扰,在整个寿命中的知识和技能范围是自然智能的标志,具有明显的进化动机。同时,人工神经网络(ANN)在一系列任务和域中学习的能力,组合和重新使用所需的学习表现,是人工智能的明确目标。这种能力被广泛描述为持续学习,已成为机器学习研究的多产子场。尽管近年来近年来深度学习的众多成功,但跨越域名从图像识别到机器翻译,因此这种持续的任务学习已经证明了具有挑战性的。在具有随机梯度下降的序列上训练的神经网络通常遭受代表性干扰,由此给定任务的学习权重有效地覆盖了在灾难性遗忘的过程中的先前任务的权重。这代表了对更广泛的人工学习系统发展的主要障碍,能够以类似于人类的方式积累时间和任务空间的知识。伴随的选定论文和实施存储库可以在https://github.com/mccaffary/continualualuallning找到。
translated by 谷歌翻译
如今,预测机器学习模型通常以无状态和昂贵的方式进行更新。想要建立基于机器学习的应用程序和系统的公司的两个主要未来趋势是实时推理和持续更新。不幸的是,这两种趋势都需要一个成熟的基础设施,这很难实现本地人。本文定义了一种新颖的软件服务和模型交付基础架构,称为连续学习 - 服务(CLAAS)来解决这些问题。具体而言,它包含持续的机器学习和连续的集成技术。它为数据科学家提供了模型更新和验证工具的支持,而无需进行本地解决方案,并且以高效,陈述和易于使用的方式提供了支持。最后,此CL模型服务易于封装在任何机器学习基础架构或云系统中。本文介绍了在两种现实世界中评估的CLAAS实例化的设计和实现。前者是使用core50数据集的机器人对象识别设置,而后者是命名类别,并且使用时尚域中的deepfashion-c数据集属性预测。我们的初步结果表明,无论计算在Continuum Edge-Cloud中的何处,连续学习模型服务的可用性和效率以及解决方案在解决现实世界用例中的有效性。
translated by 谷歌翻译
在线持续学习是一个充满挑战的学习方案,模型必须从非平稳的数据流中学习,其中每个样本只能看到一次。主要的挑战是在避免灾难性遗忘的同时逐步学习,即在从新数据中学习时忘记先前获得的知识的问题。在这种情况下,一种流行的解决方案是使用较小的内存来保留旧数据并随着时间的推移进行排练。不幸的是,由于内存尺寸有限,随着时间的推移,内存的质量会恶化。在本文中,我们提出了OLCGM,这是一种基于新型重放的持续学习策略,该策略使用知识冷凝技术连续压缩记忆并更好地利用其有限的尺寸。样品冷凝步骤压缩了旧样品,而不是像其他重播策略那样将其删除。结果,实验表明,每当与数据的复杂性相比,每当记忆预算受到限制,OLCGM都会提高与最先进的重播策略相比的最终准确性。
translated by 谷歌翻译
Continual Learning, also known as Lifelong or Incremental Learning, has recently gained renewed interest among the Artificial Intelligence research community. Recent research efforts have quickly led to the design of novel algorithms able to reduce the impact of the catastrophic forgetting phenomenon in deep neural networks. Due to this surge of interest in the field, many competitions have been held in recent years, as they are an excellent opportunity to stimulate research in promising directions. This paper summarizes the ideas, design choices, rules, and results of the challenge held at the 3rd Continual Learning in Computer Vision (CLVision) Workshop at CVPR 2022. The focus of this competition is the complex continual object detection task, which is still underexplored in literature compared to classification tasks. The challenge is based on the challenge version of the novel EgoObjects dataset, a large-scale egocentric object dataset explicitly designed to benchmark continual learning algorithms for egocentric category-/instance-level object understanding, which covers more than 1k unique main objects and 250+ categories in around 100k video frames.
translated by 谷歌翻译
从非稳定性数据流不断学习是过去几年中日益普及的具有挑战性的研究课题。能够在高效,有效和可扩展的方式中不断地学习,适应和推广,是人工智能系统可持续发展的基础。然而,以持续学习的代理为中心的视图需要直接学习原始数据,这限制了独立代理,效率和当前方法的隐私之间的相互作用。相反,我们认为,持续学习系统应该利用经过培训的模型的形式利用压缩信息的可用性。在本文中,我们介绍并将一个名为“EX-Modul持续学习”(EXML)的新范式介绍并形式化,其中代理从一系列先前培训的模型而不是原始数据学习。我们进一步贡献了三种前模型连续学习算法和包括三个数据集(Mnist,CiFar-10和Core50)的经验设置,以及所提出的算法广泛测试的八种情况。最后,我们突出了前模式范式的特点,我们指出了有趣的未来研究方向。
translated by 谷歌翻译
对人工智能(AI)法规的增加导致了一系列伦理原则的定义,分为可持续的AI框架。在本文中,我们识别持续学习,是AI研究的一个活跃领域,作为符合可持续AI原则的系统设计的有希望的方法。虽然可持续的AI概述了伦理应用的一般追逐者,但持续的学习提供了将如此探索的手段进入实践。
translated by 谷歌翻译
持续学习(CL,有时也称为增量学习)是机器学习的一种味道,在该口味中,通常会放松或省略固定数据分布的通常假设。当天然应用时,例如CL问题中的DNNS时,数据分布的变化会导致所谓的灾难性遗忘(CF)效应:突然丧失了先前的知识。尽管近年来已经为启用CL做出了许多重大贡献,但大多数作品都解决了受监督的(分类)问题。本文回顾了在其他环境中研究CL的文献,例如通过减少监督,完全无监督的学习和强化学习的学习。除了提出一个简单的模式用于分类CL方法W.R.T.他们的自主权和监督水平,我们讨论了与每种设置相关的具体挑战以及对CL领域的潜在贡献。
translated by 谷歌翻译
深度学习模型在识别医学图像中的发现方面表现出了极大的有效性。但是,他们无法处理不断变化的临床环境,从而带来了来自不同来源的新注释的医学数据。为了利用传入的数据流,这些模型将在很大程度上受益于从新样本中依次学习,而不会忘记先前获得的知识。在本文中,我们通过应用现有的最新持续学习方法介绍了MedMnist收集中连续疾病分类的基准。特别是,我们考虑了三种连续的学习方案,即任务和班级增量学习以及新定义的跨域增量学习。疾病的任务和班级增量学习解决了对新样本进行分类的问题,而无需重新从头开始模型,而跨域增量学习解决了处理源自不同机构的数据集的问题,同时保留了先前获得的知识。我们对表现进行彻底的分析,并研究如何在这种情况下表现出灾难性遗忘的持续学习挑战。令人鼓舞的结果表明,持续学习具有推进疾病分类并为临床环境产生更强大,更有效的学习框架的主要潜力。将公开提供完整基准测试的代码存储库,数据分区和基线结果。
translated by 谷歌翻译
已知应用于任务序列的标准梯度下降算法可在深层神经网络中产生灾难性遗忘。当对序列中的新任务进行培训时,该模型会在当前任务上更新其参数,从而忘记过去的知识。本文探讨了我们在有限环境中扩展任务数量的方案。这些方案由与重复数据的长期任务组成。我们表明,在这种情况下,随机梯度下降可以学习,进步并融合到根据现有文献需要持续学习算法的解决方案。换句话说,我们表明该模型在没有特定的记忆机制的情况下执行知识保留和积累。我们提出了一个新的实验框架,即Scole(缩放量表),以研究在潜在无限序列中的知识保留和算法的积累。为了探索此设置,我们对1,000个任务的序列进行了大量实验,以更好地了解这种新的设置家庭。我们还提出了对香草随机梯度下降的轻微修改,以促进这种情况下的持续学习。 SCOLE框架代表了对实用训练环境的良好模拟,并允许长序列研究收敛行为。我们的实验表明,在短方案上以前的结果不能总是推断为更长的场景。
translated by 谷歌翻译
灾难性的遗忘是阻碍在持续学习环境中部署深度学习算法的一个重大问题。已经提出了许多方法来解决灾难性的遗忘问题,在学习新任务时,代理商在旧任务中失去了其旧任务的概括能力。我们提出了一项替代策略,可以通过知识合并(CFA)处理灾难性遗忘,该策略从多个专门从事以前任务的多个异构教师模型中学习了学生网络,并可以应用于当前的离线方法。知识融合过程以单头方式进行,只有选定数量的记忆样本,没有注释。教师和学生不需要共享相同的网络结构,可以使异质任务适应紧凑或稀疏的数据表示。我们将我们的方法与不同策略的竞争基线进行比较,证明了我们的方法的优势。
translated by 谷歌翻译
持续学习 - 从一系列学习经验中积累知识 - 是一个重要但充满挑战的问题。在此范式中,由于看到其他数据,该模型的先前遇到实例的性能可能会大大下降。在处理类不平衡数据时,忘记进一步加剧了。先前的工作提出了基于重播的方法,旨在通过智能存储未来重播的实例来减少遗忘。尽管类平衡储层抽样(CBRS)在处理不平衡数据方面已经成功,但尚未考虑类内的多样性,隐含地假设类的每个实例都同样有用。我们提出了不同的cbrs(D-CBRS),这是一种算法,使我们可以在存储内存中的实例时在类多样性中考虑。我们的结果表明,D-CBR的表现优于最先进的存储器管理在具有相当大的内部多样性的数据集上的持续学习算法。
translated by 谷歌翻译
We motivate Energy-Based Models (EBMs) as a promising model class for continual learning problems. Instead of tackling continual learning via the use of external memory, growing models, or regularization, EBMs change the underlying training objective to cause less interference with previously learned information. Our proposed version of EBMs for continual learning is simple, efficient, and outperforms baseline methods by a large margin on several benchmarks. Moreover, our proposed contrastive divergence-based training objective can be combined with other continual learning methods, resulting in substantial boosts in their performance. We further show that EBMs are adaptable to a more general continual learning setting where the data distribution changes without the notion of explicitly delineated tasks. These observations point towards EBMs as a useful building block for future continual learning methods.
translated by 谷歌翻译
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern (1) a taxonomy and extensive overview of the state-of-the-art; (2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner; (3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time and storage.
translated by 谷歌翻译
恶意软件(恶意软件)分类为持续学习(CL)制度提供了独特的挑战,这是由于每天收到的新样本的数量以及恶意软件的发展以利用新漏洞。在典型的一天中,防病毒供应商将获得数十万个独特的软件,包括恶意和良性,并且在恶意软件分类器的一生中,有超过十亿个样品很容易积累。鉴于问题的规模,使用持续学习技术的顺序培训可以在减少培训和存储开销方面提供可观的好处。但是,迄今为止,还没有对CL应用于恶意软件分类任务的探索。在本文中,我们研究了11种应用于三个恶意软件任务的CL技术,涵盖了常见的增量学习方案,包括任务,类和域增量学习(IL)。具体而言,使用两个现实的大规模恶意软件数据集,我们评估了CL方法在二进制恶意软件分类(domain-il)和多类恶意软件家庭分类(Task-IL和类IL)任务上的性能。令我们惊讶的是,在几乎所有情况下,持续的学习方法显着不足以使训练数据的幼稚关节重播 - 在某些情况下,将精度降低了70个百分点以上。与关节重播相比,有选择性重播20%的存储数据的一种简单方法可以实现更好的性能,占训练时间的50%。最后,我们讨论了CL技术表现出乎意料差的潜在原因,希望它激发进一步研究在恶意软件分类域中更有效的技术。
translated by 谷歌翻译
Continual Learning is a step towards lifelong intelligence where models continuously learn from recently collected data without forgetting previous knowledge. Existing continual learning approaches mostly focus on image classification in the class-incremental setup with clear task boundaries and unlimited computational budget. This work explores Online Domain-Incremental Continual Segmentation~(ODICS), a real-world problem that arises in many applications, \eg, autonomous driving. In ODICS, the model is continually presented with batches of densely labeled images from different domains; computation is limited and no information about the task boundaries is available. In autonomous driving, this may correspond to the realistic scenario of training a segmentation model over time on a sequence of cities. We analyze several existing continual learning methods and show that they do not perform well in this setting despite working well in class-incremental segmentation. We propose SimCS, a parameter-free method complementary to existing ones that leverages simulated data as a continual learning regularizer. Extensive experiments show consistent improvements over different types of continual learning methods that use regularizers and even replay.
translated by 谷歌翻译
Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms that together contribute to the development and specialization of our sensorimotor skills as well as to long-term memory consolidation and retrieval. Consequently, lifelong learning capabilities are crucial for computational systems and autonomous agents interacting in the real world and processing continuous streams of information. However, lifelong learning remains a long-standing challenge for machine learning and neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. This limitation represents a major drawback for state-of-the-art deep neural network models that typically learn representations from stationary batches of training data, thus without accounting for situations in which information becomes incrementally available over time. In this review, we critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting. Although significant advances have been made in domain-specific learning with neural networks, extensive research efforts are required for the development of robust lifelong learning on autonomous agents and robots. We discuss well-established and emerging research motivated by lifelong learning factors in biological systems such as structural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and multisensory integration.
translated by 谷歌翻译