已经证明,基于自我监督的学习(SSL)模型可以生成强大的表示,可用于改善下游语音任务的性能。可以使用几种最先进的SSL模型,并且这些模型中的每一个都优化了不同的损失,这会导致其功能互补的可能性。本文提出了使用此类SSL表示和模型的集合,该集合利用了各种预审预周化模型提取的特征的互补性质。我们假设这导致了更丰富的特征表示,并显示了ASR下游任务的结果。为此,我们使用了三个SSL模型,这些模型在ASR任务上显示出了出色的结果,即Hubert,Wav2Vec2.0和小波。我们使用从预训练的模型获得下游ASR任务的嵌入方式来探索用于ASR任务的模型集合和功能集合。我们使用LiblisPeech(100H)和WSJ数据集的单个模型和预训练的功能获得了改进的性能,用于下游任务。
translated by 谷歌翻译
自我监督的学习(SSL)在各种与语音有关的下游任务(包括自动语音识别(ASR))中表现出巨大的成功。 SSL模型的输出嵌入被视为语音信号的强大短期表示。但是,在ASR任务中,主要目标是获得正确的声学单元,字符或字节对编码(BPE)的正确顺序。通常,对于ASR等序列到序列任务,编码器解码器架构非常出色。因此,在本文中,我们提出了一个新的范式,该范式在自学学习过程中利用解码器的力量。我们使用隐藏的单位Bert(Hubert)SSL框架来计算编码器的常规掩蔽预测损失。此外,我们在SSL框架中引入了解码器,并为解码器提出了目标准备策略。最后,我们使用多任务SSL设置,其中我们共同优化编码器和解码器损耗。我们假设SSL模型中的解码器的存在有助于它学习基于声学单元的语言模型,这可能会改善ASR下游任务的性能。我们将我们提出的SSL模型与Hubert进行了比较,并通过对各种LibrisPeech子集进行填充,在ASR上的性能相对相对提高了25%。
translated by 谷歌翻译
最近,先驱工作发现,演讲预训练模型可以解决全堆栈语音处理任务,因为该模型利用底层学习扬声器相关信息和顶层以编码与内容相关的信息。由于网络容量有限,我们认为如果模型专用于音频内容信息学习,则可以进一步提高语音识别性能。为此,我们向自我监督学习(ILS-SSL)提出中间层监督,这将模型通过在中间层上添加额外的SSL丢失来尽可能地专注于内容信息。 LibrisPeech测试 - 其他集合的实验表明,我们的方法显着优于Hubert,这实现了基数/大型模型的W / O语言模型设置的相对字错误率降低了23.5%/ 11.6%。详细分析显示我们模型的底层与拼音单元具有更好的相关性,这与我们的直觉一致,并解释了我们对ASR的方法的成功。
translated by 谷歌翻译
学习高级语音表征的自学学习(SSL)一直是在低资源环境中构建自动语音识别(ASR)系统的一种流行方法。但是,文献中提出的共同假设是,可以使用可用于SSL预训练的相同域或语言的大量未标记数据,我们承认,在现实世界中,这是不可行的。在本文中,作为Interspeech Gram Vaani ASR挑战的一部分,我们尝试研究域,语言,数据集大小和上游训练SSL数据对最终性能下游ASR任务的效果。我们还建立在持续的训练范式的基础上,以研究使用SSL训练的模型所拥有的先验知识的效果。广泛的实验和研究表明,ASR系统的性能易受用于SSL预训练的数据。它们的性能随着相似性和预训练数据量的增加而提高。我们认为,我们的工作将有助于语音社区在低资源环境中建立更好的ASR系统,并引导研究改善基于SSL的语音系统预培训的概括。
translated by 谷歌翻译
最近,蒙面的预测预训练在自我监督的学习(SSL)方面取得了显着的进展,以进行语音识别。它通常需要以无监督的方式获得的代码簿,从而使其准确和难以解释。我们提出了两种监督指导的代码书生成方法,以提高自动语音识别(ASR)的性能以及预训练效率,要么通过使用混合ASR系统来解码以生成音素级别对准(命名为PBERT),要么通过在上进行集群进行聚类。从端到端CTC模型(命名CTC聚类)提取的监督语音功能。混合动力和CTC模型均经过与微调相同的少量标记语音训练。实验表明,我们的方法对各种SSL和自我训练基准的优势具有显着优势,相对减少了17.0%。我们的预训练模型在非ASR语音任务中还显示出良好的可传递性。
translated by 谷歌翻译
自我监督学习(SSL)在语音识别方面取得了巨大的成功,而有限的探索已尝试完成其他语音处理任务。由于语音信号包含多方面的信息,包括说话者身份,副语言学,口语内容等,学习所有语音任务的通用表示都具有挑战性。为了解决该问题,我们提出了一个新的预培训模型WAVLM,以解决全堆栈的下游语音任务。 Wavlm共同学习了蒙面的语音预测和预训练。通过这种方式,WAVLM不仅可以通过掩盖的语音预测来保持语音内容建模能力,而且还可以通过语音denoing来提高非ASR任务的潜力。此外,WAVLM还采用封闭式的变压器结构的封闭相对位置偏置,以更好地捕获输入语音的序列排序。我们还将培训数据集从60k小时扩展到94K小时。 WAVLM大型在精湛的基准上实现了最先进的性能,并在其代表性基准上为各种语音处理任务带来了重大改进。代码和预培训模型可在https://aka.ms/wavlm上找到。
translated by 谷歌翻译
最近,即使预训练目标是为语音识别而设计的,自我监督学习(SSL)即使在说话者的识别方面表现出了很强的表现。在本文中,我们研究了哪些因素导致对与说话者相关的任务的自我监督学习成功,例如扬声器验证(SV)通过一系列精心设计的实验。我们对Voxceleb-1数据集的经验结果表明,SSL对SV任务的好处是来自蒙版语音预测丢失,数据量表和模型大小的组合,而SSL量化器具有较小的影响。我们进一步采用了综合梯度归因方法和损失景观可视化,以了解说话者识别性能的自我监督学习的有效性。
translated by 谷歌翻译
自我监督的语音表示,如Wav2Vec 2.0和Hubert正在自动语音识别(ASR)中进行革命性进展。但是,未经监督模型没有完全证明在ASR以外的任务中产生更好的性能。在这项工作中,我们探索了Wav2Vec 2.0和Hubert预先训练模型的部分微调和整个微调,适用于三个非ASR语音任务:语音情感识别,发言者验证和口语理解。我们还比较带有/没有ASR微调的预训练型号。通过简单的下游框架,最佳分数对IEMocap上的语音情感识别的加权精度达到79.58%,扬声器验证对voxcereB1的2.36%,意图分类的准确性为87.51%,Slotp的槽填充的75.32%f1,因此为这三个基准设置新的最先进,证明了微调Wave2VEC 2.0和Hubert模型可以更好地学习韵律,语音印刷和语义表示。
translated by 谷歌翻译
Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-ofthe-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets. 1
translated by 谷歌翻译
我们总结了使用巨大的自动语音识别(ASR)模型的大量努力的结果,该模型使用包含大约一百万小时音频的大型,多样的未标记数据集进行了预训练。我们发现,即使对于拥有数万个小时的标记数据的非常大的任务,预训练,自我培训和扩大模型大小的组合也大大提高了数据效率。特别是,在具有34K小时标记数据的ASR任务上,通过微调80亿个参数预先训练的构象异构体模型,我们可以匹配最先进的(SOTA)性能(SOTA)的性能,只有3%的培训数据和通过完整的训练集可以显着改善SOTA。我们还报告了从使用大型预训练和自我训练的模型来完成一系列下游任务所获得的普遍利益,这些任务涵盖了广泛的语音域,并涵盖了多个数据集大小的大小,包括在许多人中获得SOTA性能公共基准。此外,我们利用预先训练的网络的学会表示,在非ASR任务上实现SOTA结果。
translated by 谷歌翻译
我们利用Libri-Light数据集的未标记音频来获得半监督学习中最新的发展的最新发展,以获得自动语音识别的最新结果。更确切地说,我们使用使用WAV2VEC 2.0预训练的巨型构象模型进行了嘈杂的学生培训,并使用巨型构象模型进行了训练。通过这样做,我们能够在Librispeech测试/测试中获得1.4%/2.6%的单词率率(WERS),而目前的最新设备为1.7%/3.3%。
translated by 谷歌翻译
Recently proposed self-supervised learning approaches have been successful for pre-training speech representation models. The utility of these learned representations has been observed empirically, but not much has been studied about the type or extent of information encoded in the pre-trained representations themselves. Developing such insights can help understand the capabilities and limits of these models and enable the research community to more efficiently develop their usage for downstream applications. In this work, we begin to fill this gap by examining one recent and successful pre-trained model (wav2vec 2.0), via its intermediate representation vectors, using a suite of analysis tools. We use the metrics of canonical correlation, mutual information, and performance on simple downstream tasks with non-parametric probes, in order to (i) query for acoustic and linguistic information content, (ii) characterize the evolution of information across model layers, and (iii) understand how fine-tuning the model for automatic speech recognition (ASR) affects these observations. Our findings motivate modifying the fine-tuning protocol for ASR, which produces improved word error rates in a low-resource setting.
translated by 谷歌翻译
自我监督的预训练可以有效地改善低资源自动语音识别(ASR)的性能。但是,现有的自我监督的预训练是任务不合时宜的,即可以应用于各种下游任务。尽管它扩大了其应用的范围,但预训练模型的容量并未完全用于ASR任务,并且学习的表示形式可能对ASR不最佳。在这项工作中,为了为低资源ASR构建更好的预训练模型,我们提出了一种称为WAV2VEC-S的预训练方法,我们使用特定于任务的半监督预培训来完善自我监督的预培训因此,ASR任务的预训练模型更有效地利用了预培训模型的能力来生成针对ASR的任务特定表示。实验表明,与WAV2VEC 2.0相比,WAV2VEC-S仅需要训练前时间的边际增长,但可以显着改善在内域,跨域和跨语言数据集上的ASR性能。 1H和10H微调分别为24.5%和6.6%。此外,我们表明,半监督的预训练可以通过规范相关分析来弥合自我监管的预训练模型与相应的微调模型之间的表示差距。
translated by 谷歌翻译
虽然自我监督的语音表示学习(SSL)模型执行了各种下游任务,但已经观察到这些模型过于拟合未标记数据来源的域。为了减轻此问题,我们提出了PADA(修剪辅助域的适应性),并在大量室外(OOD)数据上进行预训练的模型中的冗余权重。直观地,这有助于为目标域ASR芬太尼腾出空间。可以通过各种修剪策略来识别多余的权重,这些策略已作为本工作的一部分进行了详细讨论。具体而言,我们研究了最近发现的任务不合时宜的和任务感知的修剪对PADA的效果,并根据后者提出了一个新的修剪范式,我们称之为跨域任务意识到的修剪(CD-TAW)。 CD-TAW从精心调整的OOD模型中获得了初始修剪面膜,这使其与本文讨论的其余修剪策略完全不同。当在没有语言模型(LM)解码的2小时子集中进行微调时,我们提出的CD-TAW方法比基线相对相对改善高达20.6%。此外,我们进行了详细的分析,以突出提出的方法的关键设计选择。
translated by 谷歌翻译
本文调查了视听扬声器表示的自我监督的预训练,其中显示了视觉流,显示说话者的口腔区域与语音一起用作输入。我们的研究重点是视听隐藏单元BERT(AV-HUBERT)方法,该方法是最近开发的通用音频语音训练前训练框架。我们进行了广泛的实验,以探测预训练和视觉方式的有效性。实验结果表明,AV-Hubert可以很好地概括与说话者相关的下游任务,从而使标签效率提高了大约10倍的仅10倍,仅音频和视听扬声器验证。我们还表明,结合视觉信息,甚至仅仅是唇部区域,都大大提高了性能和噪声稳健性,在清洁条件下将EER降低了38%,在嘈杂的条件下将EER降低了75%。
translated by 谷歌翻译
The massive growth of self-supervised learning (SSL) has been witnessed in language, vision, speech, and audio domains over the past few years. While discrete label prediction is widely adopted for other modalities, the state-of-the-art audio SSL models still employ reconstruction loss for pre-training. Compared with reconstruction loss, semantic-rich discrete label prediction encourages the SSL model to abstract the high-level audio semantics and discard the redundant details as in human perception. However, a semantic-rich acoustic tokenizer for general audio pre-training is usually not straightforward to obtain, due to the continuous property of audio and unavailable phoneme sequences like speech. To tackle this challenge, we propose BEATs, an iterative audio pre-training framework to learn Bidirectional Encoder representation from Audio Transformers, where an acoustic tokenizer and an audio SSL model are optimized by iterations. In the first iteration, we use random projection as the acoustic tokenizer to train an audio SSL model in a mask and label prediction manner. Then, we train an acoustic tokenizer for the next iteration by distilling the semantic knowledge from the pre-trained or fine-tuned audio SSL model. The iteration is repeated with the hope of mutual promotion of the acoustic tokenizer and audio SSL model. The experimental results demonstrate our acoustic tokenizers can generate discrete labels with rich audio semantics and our audio SSL models achieve state-of-the-art results across various audio classification benchmarks, even outperforming previous models that use more training data and model parameters significantly. Specifically, we set a new state-of-the-art mAP 50.6% on AudioSet-2M for audio-only models without using any external data, and 98.1% accuracy on ESC-50. The code and pre-trained models are available at https://aka.ms/beats.
translated by 谷歌翻译
In this paper, we propose a novel multi-modal multi-task encoder-decoder pre-training framework (MMSpeech) for Mandarin automatic speech recognition (ASR), which employs both unlabeled speech and text data. The main difficulty in speech-text joint pre-training comes from the significant difference between speech and text modalities, especially for Mandarin speech and text. Unlike English and other languages with an alphabetic writing system, Mandarin uses an ideographic writing system where character and sound are not tightly mapped to one another. Therefore, we propose to introduce the phoneme modality into pre-training, which can help capture modality-invariant information between Mandarin speech and text. Specifically, we employ a multi-task learning framework including five self-supervised and supervised tasks with speech and text data. For end-to-end pre-training, we introduce self-supervised speech-to-pseudo-codes (S2C) and phoneme-to-text (P2T) tasks utilizing unlabeled speech and text data, where speech-pseudo-codes pairs and phoneme-text pairs are a supplement to the supervised speech-text pairs. To train the encoder to learn better speech representation, we introduce self-supervised masked speech prediction (MSP) and supervised phoneme prediction (PP) tasks to learn to map speech into phonemes. Besides, we directly add the downstream supervised speech-to-text (S2T) task into the pre-training process, which can further improve the pre-training performance and achieve better recognition results even without fine-tuning. Experiments on AISHELL-1 show that our proposed method achieves state-of-the-art performance, with a more than 40% relative improvement compared with other pre-training methods.
translated by 谷歌翻译
Through solving pretext tasks, self-supervised learning leverages unlabeled data to extract useful latent representations replacing traditional input features in the downstream task. In audio/speech signal processing, a wide range of features where engineered through decades of research efforts. As it turns out, learning to predict such features (a.k.a pseudo-labels) has proven to be a particularly relevant pretext task, leading to useful self-supervised representations which prove to be effective for downstream tasks. However, methods and common practices for combining such pretext tasks for better performance on the downstream task have not been explored and understood properly. In fact, the process relies almost exclusively on a computationally heavy experimental procedure, which becomes intractable with the increase of the number of pretext tasks. This paper introduces a method to select a group of pretext tasks among a set of candidates. The method we propose estimates calibrated weights for the partial losses corresponding to the considered pretext tasks during the self-supervised training process. The experiments conducted on automatic speech recognition, speaker and emotion recognition validate our approach, as the groups selected and weighted with our method perform better than classic baselines, thus facilitating the selection and combination of relevant pseudo-labels for self-supervised representation learning.
translated by 谷歌翻译
最近,用于语音处理的自我监督模型最近作为语音处理管道中流行的基础块出现。这些模型在未标记的音频数据上进行了预训练,然后用于语音处理下游任务,例如自动语音识别(ASR)或语音翻译(ST)。由于这些模型现在都用于研究和工业系统,因此有必要理解某些特征在培训数据中的性别分布等特征所引起的影响。我们以法语为我们的调查语言,训练和比较性别特定的WAV2VEC 2.0模型与在其预训练数据中包含不同性别平衡的模型。通过将这些模型应用于两个语音到文本下游任务:ASR和ST进行比较。结果显示了下游集成的类型。在微调端到端ASR系统之前,我们使用性别特定的预训练观察到较低的总体性能。但是,当将自我监督模型用作特征提取器时,总体ASR和ST结果遵循更复杂的模式,在这种模式下,平衡的预训练模型不一定会带来最佳结果。最后,我们粗制的“公平”度量标准(男性测试集之间测量的相对性能差异)并未显示出从平衡到特定性别的预训练的Preaded Wav2Vec 2.0模型的强烈变化。
translated by 谷歌翻译
从未标记数据的代表学习一直是对人工智能研究的重大兴趣。虽然自我监督的言语代表学习在语音研究界受欢迎,但很少有效地对非语音音频任务进行了全面分析了音频表示学习。在本文中,我们提出了一种自我监督的音频表示学习方法,并将其应用于各种下游非语音音频任务。我们将众所周知的Wav2Vec 2.0框架结合起来,这在用于语音任务的自我监督学习中取得了成功,具有参数效率的构装体系结构。我们的自我监督的预培训可以减少三分之二的标记数据的需求。在Audioset基准测试中,我们达到平均平均精度(地图)得分为0.415,这是通过仅限音频自我监督的学习在此数据集上的新型最先进的。我们的微调符合子也超越了在几个下游任务上以监督方式预先培训的先前系统的性能。我们进一步讨论了预先培训和微调的重要设计考虑因素。
translated by 谷歌翻译