The SINDy algorithm has been successfully used to identify the governing equations of dynamical systems from time series data. In this paper, we argue that this makes SINDy a potentially useful tool for causal discovery and that existing tools for causal discovery can be used to dramatically improve the performance of SINDy as tool for robust sparse modeling and system identification. We then demonstrate empirically that augmenting the SINDy algorithm with tools from causal discovery can provides engineers with a tool for learning causally robust governing equations.
translated by 谷歌翻译
动态系统中的完美适应性是一个或多个变量具有对外部刺激的持续变化的初始短暂响应的现象,但随着系统收敛到平衡,其原始值还原为原始值。借助因果有序算法,可以构建代表变量之间的因果关系和平衡分布中条件独立性之间的因果关系的图形表示。我们应用这些工具来制定足够的图形条件,以识别一组一阶微分方程的完美适应。此外,我们提供了足够的条件来测试实验平衡数据中完美适应的情况。我们将此方法应用于蛋白质信号通路的简单模型,并在模拟和使用现实世界中的蛋白质表达数据中测试其预测。我们证明,完美的适应会导致因果发现算法输出中边缘的误导方向。
translated by 谷歌翻译
数学模型是动态控制系统设计中的基本构件。随着控制系统变得越来越复杂和网络,基于第一原理的方法达到了限制。数据驱动的方法提供了替代方案。但是,在没有结构知识的情况下,这些方法很容易在训练数据中找到虚假的相关性,这可能会妨碍所获得的模型的概括能力。当系统暴露于未知情况时,这可以显着降低控制和预测性能。先前的因果鉴定可以防止这种陷阱。在本文中,我们提出了一种识别控制系统因果结构的方法。我们根据可控性概念设计实验,该概念提供了一种系统的方法来计算输入轨迹,该输入轨迹将系统引导到其状态空间中的特定区域。然后,我们分析从因果推理中利用强大技术的结果数据,并将其扩展到控制系统。此外,我们得出了保证发现系统真正因果结构的条件。在机器人臂上的实验表明,来自现实世界数据和增强的概括能力的可靠因果鉴定。
translated by 谷歌翻译
因果推断对于跨业务参与,医疗和政策制定等领域的数据驱动决策至关重要。然而,关于因果发现的研究已经与推理方法分开发展,从而阻止了两个领域方法的直接组合。在这项工作中,我们开发了深层端到端因果推理(DECI),这是一种基于流动的非线性添加噪声模型,该模型具有观察数据,并且可以执行因果发现和推理,包括有条件的平均治疗效果(CATE) )估计。我们提供了理论上的保证,即DECI可以根据标准因果发现假设恢复地面真实因果图。受应用影响的激励,我们将该模型扩展到具有缺失值的异质,混合型数据,从而允许连续和离散的治疗决策。我们的结果表明,与因果发现的相关基线相比,DECI的竞争性能和(c)在合成数据集和因果机器学习基准测试基准的一千多个实验中,跨数据类型和缺失水平进行了估计。
translated by 谷歌翻译
考虑基于AI和ML的决策对这些新兴技术的安全和可接受的使用的决策的社会和道德后果至关重要。公平,特别是保证ML决定不会导致对个人或少数群体的歧视。使用因果关系,可以更好地实现和衡量可靠的公平/歧视,从而更好地实现了敏感属性(例如性别,种族,宗教等)之间的因果关系,仅仅是仅仅是关联,例如性别,种族,宗教等(例如,雇用工作,贷款授予等) )。然而,对因果关系解决公平性的最大障碍是因果模型的不可用(通常表示为因果图)。文献中现有的因果关系方法并不能解决此问题,并假设可获得因果模型。在本文中,我们没有做出这样的假设,并且我们回顾了从可观察数据中发现因果关系的主要算法。这项研究的重点是因果发现及其对公平性的影响。特别是,我们展示了不同的因果发现方法如何导致不同的因果模型,最重要的是,即使因果模型之间的轻微差异如何对公平/歧视结论产生重大影响。通过使用合成和标准公平基准数据集的经验分析来巩固这些结果。这项研究的主要目标是强调因果关系使用因果关系适当解决公平性的因果发现步骤的重要性。
translated by 谷歌翻译
Biological systems and processes are networks of complex nonlinear regulatory interactions between nucleic acids, proteins, and metabolites. A natural way in which to represent these interaction networks is through the use of a graph. In this formulation, each node represents a nucleic acid, protein, or metabolite and edges represent intermolecular interactions (inhibition, regulation, promotion, coexpression, etc.). In this work, a novel algorithm for the discovery of latent graph structures given experimental data is presented.
translated by 谷歌翻译
现实世界的数学模型是复杂系统的简化表示。使用数学模型的警告是,在模型扩展下,预测的因果效应和条件独立性可能不健壮,从而限制了此类模型的适用性。在这项工作中,我们考虑将两个模型组合在一起时保留定性模型预测的条件。在温和的假设下,我们展示了如何使用因果秩序的技术来有效评估定性模型预测的鲁棒性。我们还表征了一大批模型扩展,以保留定性模型预测。对于平衡的动态系统,我们演示了新颖的见解如何有助于选择适当的模型扩展,并理解反馈回路的存在。我们用具有免疫反应的病毒感染模型来说明我们的想法。
translated by 谷歌翻译
Causal learning has attracted much attention in recent years because causality reveals the essential relationship between things and indicates how the world progresses. However, there are many problems and bottlenecks in traditional causal learning methods, such as high-dimensional unstructured variables, combinatorial optimization problems, unknown intervention, unobserved confounders, selection bias and estimation bias. Deep causal learning, that is, causal learning based on deep neural networks, brings new insights for addressing these problems. While many deep learning-based causal discovery and causal inference methods have been proposed, there is a lack of reviews exploring the internal mechanism of deep learning to improve causal learning. In this article, we comprehensively review how deep learning can contribute to causal learning by addressing conventional challenges from three aspects: representation, discovery, and inference. We point out that deep causal learning is important for the theoretical extension and application expansion of causal science and is also an indispensable part of general artificial intelligence. We conclude the article with a summary of open issues and potential directions for future work.
translated by 谷歌翻译
本文研究了从观察数据学习因果关系的问题。我们用二进制图邻接矩阵参数化的形式重整结构方程模型(SEM),并显示,如果原始SEM是可识别的,则可以识别二进制邻接矩阵到真实因果图的超图在温和的条件下。然后,我们利用所述重新设计的SEM来开发一种因果结构学习方法,可以通过利用对非循环性和Gumbel-Softmax方法的平滑表征来实现基于梯度的优化来有效地接受训练,以近似于二进制邻接矩阵。发现获得的条目通常在零或一个附近,并且可以容易地阈值以识别边缘。我们对合成和实时数据集进行实验,以验证所提出的方法的有效性,并表明它容易包括不同的平滑模型功能,并在考虑大多数数据集中实现了大大提高的性能。
translated by 谷歌翻译
Linear structural causal models (SCMs)-- in which each observed variable is generated by a subset of the other observed variables as well as a subset of the exogenous sources-- are pervasive in causal inference and casual discovery. However, for the task of causal discovery, existing work almost exclusively focus on the submodel where each observed variable is associated with a distinct source with non-zero variance. This results in the restriction that no observed variable can deterministically depend on other observed variables or latent confounders. In this paper, we extend the results on structure learning by focusing on a subclass of linear SCMs which do not have this property, i.e., models in which observed variables can be causally affected by any subset of the sources, and are allowed to be a deterministic function of other observed variables or latent confounders. This allows for a more realistic modeling of influence or information propagation in systems. We focus on the task of causal discovery form observational data generated from a member of this subclass. We derive a set of necessary and sufficient conditions for unique identifiability of the causal structure. To the best of our knowledge, this is the first work that gives identifiability results for causal discovery under both latent confounding and deterministic relationships. Further, we propose an algorithm for recovering the underlying causal structure when the aforementioned conditions are satisfied. We validate our theoretical results both on synthetic and real datasets.
translated by 谷歌翻译
动态系统广泛用于科学和工程,以模拟由多个交互组件组成的系统。通常,它们可以在意义上给出因果解释,因为它们不仅模拟了系统组件状态随时间的演变,而且描述了他们的进化如何受到动态的系统的外部干预的影响。我们介绍了结构动态因果模型(SDCMS)的正式框架,其将系统组件的因果语言作为模型的一部分来阐述。 SDCMS表示动态系统作为随机过程的集合,并指定了管理每个组件的动态的基本因果机制,作为任意顺序的随机微分方程的结构化系统。 SDCMS扩展了结构因果模型(SCM)的多功能因果建模框架,也称为结构方程模型(SEM),通过显式允许时间依赖。 SDCM可以被认为是SCM的随机过程版本,其中SCM的静态随机变量由动态随机过程及其衍生物代替。我们为SDCMS理论提供基础,(i)正式定义SDCMS,其解决方案,随机干预和图形表示; (ii)对初始条件的解决方案的存在性和独特性; (iii)随着时间的推移倾向于无穷大,讨论SDCMS平衡的条件下降; (iv)将SDCM的性质与平衡SCM的性质相关联。这封对应关系使人们能够在研究大类随机动力系统的因果语义时利用SCM的大量统计工具和发现方法。该理论用来自不同科学域的几个众所周知的示例进行说明。
translated by 谷歌翻译
在许多学科中,在大量解释变量中推断反应变量的直接因果父母的问题具有很高的实际意义。但是,建立的方法通常至少会随着解释变量的数量而呈指数级扩展,难以扩展到非线性关系,并且很难扩展到周期性数据。受{\ em Debiased}机器学习方法的启发,我们研究了一种单Vs.-the-Rest特征选择方法,以发现响应的直接因果父母。我们提出了一种用于纯观测数据的算法,同时还提供理论保证,包括可能在周期存在下的部分非线性关系的情况。由于它仅需要对每个变量进行一个估计,因此我们的方法甚至适用于大图。与既定方法相比,我们证明了显着改善。
translated by 谷歌翻译
In recent years, several methods have been proposed for the discovery of causal structure from non-experimental data. Such methods make various assumptions on the data generating process to facilitate its identification from purely observational data. Continuing this line of research, we show how to discover the complete causal structure of continuous-valued data, under the assumptions that (a) the data generating process is linear, (b) there are no unobserved confounders, and (c) disturbance variables have non-Gaussian distributions of non-zero variances. The solution relies on the use of the statistical method known as independent component analysis, and does not require any pre-specified time-ordering of the variables. We provide a complete Matlab package for performing this LiNGAM analysis (short for Linear Non-Gaussian Acyclic Model), and demonstrate the effectiveness of the method using artificially generated data and real-world data.
translated by 谷歌翻译
本文提出了一种新的因果发现方法,即结构不可知的建模(SAM)。SAM利用条件独立性和分布不对称性,旨在从观察数据中找到潜在的因果结构。该方法基于不同玩家之间的游戏,该游戏将每个变量分布有条件地作为神经网估算,而对手则旨在区分生成的数据与原始数据。结合分布估计,稀疏性和无环限制的学习标准用于通过随机梯度下降来实施图形结构和参数的优化。SAM在合成和真实数据上进行了实验验证。
translated by 谷歌翻译
Estimating the structure of directed acyclic graphs (DAGs) of features (variables) plays a vital role in revealing the latent data generation process and providing causal insights in various applications. Although there have been many studies on structure learning with various types of data, the structure learning on the dynamic graph has not been explored yet, and thus we study the learning problem of node feature generation mechanism on such ubiquitous dynamic graph data. In a dynamic graph, we propose to simultaneously estimate contemporaneous relationships and time-lagged interaction relationships between the node features. These two kinds of relationships form a DAG, which could effectively characterize the feature generation process in a concise way. To learn such a DAG, we cast the learning problem as a continuous score-based optimization problem, which consists of a differentiable score function to measure the validity of the learned DAGs and a smooth acyclicity constraint to ensure the acyclicity of the learned DAGs. These two components are translated into an unconstraint augmented Lagrangian objective which could be minimized by mature continuous optimization techniques. The resulting algorithm, named GraphNOTEARS, outperforms baselines on simulated data across a wide range of settings that may encounter in real-world applications. We also apply the proposed approach on two dynamic graphs constructed from the real-world Yelp dataset, demonstrating our method could learn the connections between node features, which conforms with the domain knowledge.
translated by 谷歌翻译
Causal inference is the process of using assumptions, study designs, and estimation strategies to draw conclusions about the causal relationships between variables based on data. This allows researchers to better understand the underlying mechanisms at work in complex systems and make more informed decisions. In many settings, we may not fully observe all the confounders that affect both the treatment and outcome variables, complicating the estimation of causal effects. To address this problem, a growing literature in both causal inference and machine learning proposes to use Instrumental Variables (IV). This paper serves as the first effort to systematically and comprehensively introduce and discuss the IV methods and their applications in both causal inference and machine learning. First, we provide the formal definition of IVs and discuss the identification problem of IV regression methods under different assumptions. Second, we categorize the existing work on IV methods into three streams according to the focus on the proposed methods, including two-stage least squares with IVs, control function with IVs, and evaluation of IVs. For each stream, we present both the classical causal inference methods, and recent developments in the machine learning literature. Then, we introduce a variety of applications of IV methods in real-world scenarios and provide a summary of the available datasets and algorithms. Finally, we summarize the literature, discuss the open problems and suggest promising future research directions for IV methods and their applications. We also develop a toolkit of IVs methods reviewed in this survey at https://github.com/causal-machine-learning-lab/mliv.
translated by 谷歌翻译
结构性因果模型(SCM)提供了一种原则方法,可以从经济学到医学的学科中的观察和实验数据中识别因果关系。但是,通常以图形模型表示的SCM不仅可以依靠数据,而要支持域知识的支持。在这种情况下,一个关键的挑战是缺乏以系统的方式将先验(背景知识)编码为因果模型的方法学框架。我们提出了一个称为因果知识层次结构(CKH)的抽象,用于将先验编码为因果模型。我们的方法基于医学中“证据水平”的基础,重点是对因果信息的信心。使用CKH,我们提出了一个方法学框架,用于编码来自各种信息源的因果研究,并将它们组合起来以得出SCM。我们在模拟数据集上评估了我们的方法,并与敏感性分析的地面真实因果模型相比,证明了整体性能。
translated by 谷歌翻译
因果关系是理解世界的科学努力的基本组成部分。不幸的是,在心理学和社会科学中,因果关系仍然是禁忌。由于越来越多的建议采用因果方法进行研究的重要性,我们重新制定了心理学研究方法的典型方法,以使不可避免的因果理论与其余的研究渠道协调。我们提出了一个新的过程,该过程始于从因果发现和机器学习的融合中纳入技术的发展,验证和透明的理论形式规范。然后,我们提出将完全指定的理论模型的复杂性降低到与给定目标假设相关的基本子模型中的方法。从这里,我们确定利息量是否可以从数据中估算出来,如果是的,则建议使用半参数机器学习方法来估计因果关系。总体目标是介绍新的研究管道,该管道可以(a)促进与测试因果理论的愿望兼容的科学询问(b)鼓励我们的理论透明代表作为明确的数学对象,(c)将我们的统计模型绑定到我们的统计模型中该理论的特定属性,因此减少了理论到模型间隙通常引起的规范不足问题,以及(d)产生因果关系和可重复性的结果和估计。通过具有现实世界数据的教学示例来证明该过程,我们以摘要和讨论来结论。
translated by 谷歌翻译
Recent years have seen rapid progress at the intersection between causality and machine learning. Motivated by scientific applications involving high-dimensional data, in particular in biomedicine, we propose a deep neural architecture for learning causal relationships between variables from a combination of empirical data and prior causal knowledge. We combine convolutional and graph neural networks within a causal risk framework to provide a flexible and scalable approach. Empirical results include linear and nonlinear simulations (where the underlying causal structures are known and can be directly compared against), as well as a real biological example where the models are applied to high-dimensional molecular data and their output compared against entirely unseen validation experiments. These results demonstrate the feasibility of using deep learning approaches to learn causal networks in large-scale problems spanning thousands of variables.
translated by 谷歌翻译
模拟DAG模型可能表现出属性,也许无意中,使其结构识别和意外地影响结构学习算法。在这里,我们表明边缘方差往往沿着仿制性添加添加剂噪声模型的因果顺序增加。我们将Varsortable介绍为衡量衡量边际差异和因果顺序的秩序之间的协议。对于通常采样的图形和模型参数,我们表明,一些连续结构学习算法的显着性能可以通过高的Varsortable解释,并通过简单的基线方法匹配。然而,这种性能可能不会转移到真实世界的数据,其中VARS使性可能是中等或取决于测量尺度的选择。在标准化数据上,相同的算法无法识别地面真理DAG或其Markov等价类。虽然标准化在边缘方差中删除了模式,但我们表明,数据产生过程,其产生高VILS使性也留下了即使在标准化之后也可以利用不同的协方差模式。我们的调查结果挑战了独立绘制参数的通用基准的重要性。代码可在https://github.com/scriddie/varsortable获得。
translated by 谷歌翻译