由于数据有限和非识别性,观察性和介入数据的因果发现是具有挑战性的:在估计基本结构因果模型(SCM)时引入不确定性的因素。基于这两个因素引起的不确定性选择实验(干预措施)可以加快SCM的识别。来自有限数据的因果发现实验设计中的现有方法要么依赖于SCM的线性假设,要么仅选择干预目标。这项工作将贝叶斯因果发现的最新进展纳入了贝叶斯最佳实验设计框架中,从而使大型非线性SCM的积极因果发现同时选择了介入目标和值。我们证明了对线性和非线性SCM的合成图(ERDOS-R \'enyi,breetr cable)以及在\ emph {intiLico}单细胞基因调节网络数据集的\ emph {inyeare scms的性能。
translated by 谷歌翻译
我们研究了全球优化因果关系变量的因果关系变量的问题,在该目标变量中可以进行干预措施。这个问题在许多科学领域都引起,包括生物学,运营研究和医疗保健。我们提出了因果熵优化(CEO),该框架概括了因果贝叶斯优化(CBO),以说明所有不确定性来源,包括由因果图结构引起的。首席执行官在因果效应的替代模型中以及用于通过信息理论采集函数选择干预措施的机制中纳入了因果结构的不确定性。所得算法自动交易结构学习和因果效应优化,同时自然考虑观察噪声。对于各种合成和现实世界的结构性因果模型,与CBO相比,CEO可以更快地与全局最佳达到融合,同时还可以学习图形。此外,我们的结构学习和因果优化的联合方法在顺序的结构学习优先方法上改善了。
translated by 谷歌翻译
跨学科的一个重要问题是发现产生预期结果的干预措施。当可能的干预空间很大时,需要进行详尽的搜索,需要实验设计策略。在这种情况下,编码变量之间的因果关系以及因此对系统的影响,对于有效地确定理想的干预措施至关重要。我们开发了一种迭代因果方法来识别最佳干预措施,这是通过分布后平均值和所需目标平均值之间的差异来衡量的。我们制定了一种主动学习策略,该策略使用从不同干预措施中获得的样本来更新有关基本因果模型的信念,并确定对最佳干预措施最有用的样本,因此应在下一批中获得。该方法采用了因果模型的贝叶斯更新,并使用精心设计的,有因果关系的收购功能优先考虑干预措施。此采集函数以封闭形式进行评估,从而有效优化。理论上以信息理论界限和可证明的一致性结果在理论上基于理论上的算法。我们说明了综合数据和现实世界生物学数据的方法,即来自worturb-cite-seq实验的基因表达数据,以识别诱导特定细胞态过渡的最佳扰动;与几个基线相比,观察到所提出的因果方法可实现更好的样品效率。在这两种情况下,我们都认为因果知情的采集函数尤其优于现有标准,从而允许使用实验明显更少的最佳干预设计。
translated by 谷歌翻译
因果推断对于跨业务参与,医疗和政策制定等领域的数据驱动决策至关重要。然而,关于因果发现的研究已经与推理方法分开发展,从而阻止了两个领域方法的直接组合。在这项工作中,我们开发了深层端到端因果推理(DECI),这是一种基于流动的非线性添加噪声模型,该模型具有观察数据,并且可以执行因果发现和推理,包括有条件的平均治疗效果(CATE) )估计。我们提供了理论上的保证,即DECI可以根据标准因果发现假设恢复地面真实因果图。受应用影响的激励,我们将该模型扩展到具有缺失值的异质,混合型数据,从而允许连续和离散的治疗决策。我们的结果表明,与因果发现的相关基线相比,DECI的竞争性能和(c)在合成数据集和因果机器学习基准测试基准的一千多个实验中,跨数据类型和缺失水平进行了估计。
translated by 谷歌翻译
贝叶斯结构学习允许从数据推断贝叶斯网络结构,同时推理认识性不确定性 - 朝着实现现实世界系统的主动因果发现和设计干预的关键因素。在这项工作中,我们为贝叶斯结构学习(DIBS)提出了一般,完全可微分的框架,其在潜在概率图表表示的连续空间中运行。与现有的工作相反,DIBS对局部条件分布的形式不可知,并且允许图形结构和条件分布参数的关节后部推理。这使得我们的配方直接适用于复杂贝叶斯网络模型的后部推理,例如,具有由神经网络编码的非线性依赖性。使用DIBS,我们设计了一种高效,通用的变分推理方法,用于近似结构模型的分布。在模拟和现实世界数据的评估中,我们的方法显着优于关节后部推理的相关方法。
translated by 谷歌翻译
因果结构学习是许多领域的关键问题。通过对感兴趣系统进行实验来学习因果结构。我们解决了设计一批实验的主要原因,每个实验中同时干预多个变量。虽然可能比常用的单变干预措施更具信息丰富,但选择这种干预措施是更具挑战性的,这是由于复合干预措施的双指数组合搜索空间。在本文中,我们开发有效的算法,以优化量化预算限制批次实验的信息性的不同目标函数。通过建立这些目标的新型子模具性质,我们为我们的算法提供近似保证。我们的算法经验上优于随机干预和算法,只能选择单变化干预。
translated by 谷歌翻译
Bayesian causal structure learning aims to learn a posterior distribution over directed acyclic graphs (DAGs), and the mechanisms that define the relationship between parent and child variables. By taking a Bayesian approach, it is possible to reason about the uncertainty of the causal model. The notion of modelling the uncertainty over models is particularly crucial for causal structure learning since the model could be unidentifiable when given only a finite amount of observational data. In this paper, we introduce a novel method to jointly learn the structure and mechanisms of the causal model using Variational Bayes, which we call Variational Bayes-DAG-GFlowNet (VBG). We extend the method of Bayesian causal structure learning using GFlowNets to learn not only the posterior distribution over the structure, but also the parameters of a linear-Gaussian model. Our results on simulated data suggest that VBG is competitive against several baselines in modelling the posterior over DAGs and mechanisms, while offering several advantages over existing methods, including the guarantee to sample acyclic graphs, and the flexibility to generalize to non-linear causal mechanisms.
translated by 谷歌翻译
结构方程模型(SEM)是一种有效的框架,其原因是通过定向非循环图(DAG)表示的因果关系。最近的进步使得能够从观察数据中实现了DAG的最大似然点估计。然而,在实际场景中,可以不能准确地捕获在推断下面的底层图中的不确定性,其中真正的DAG是不可识别的并且/或观察到的数据集是有限的。我们提出了贝叶斯因果发现网(BCD网),一个变分推理框架,用于估算表征线性高斯SEM的DAG的分布。由于图形的离散和组合性质,开发一个完整的贝叶斯后面是挑战。我们通过表达变分别家庭分析可扩展VI的可扩展VI的关键设计选择,例如1)表达性变分别家庭,2)连续弛豫,使低方差随机优化和3)在潜在变量上具有合适的前置。我们提供了一系列关于实际和合成数据的实验,显示BCD网在低数据制度中的标准因果发现度量上的最大似然方法,例如结构汉明距离。
translated by 谷歌翻译
In this review, we discuss approaches for learning causal structure from data, also called causal discovery. In particular, we focus on approaches for learning directed acyclic graphs (DAGs) and various generalizations which allow for some variables to be unobserved in the available data. We devote special attention to two fundamental combinatorial aspects of causal structure learning. First, we discuss the structure of the search space over causal graphs. Second, we discuss the structure of equivalence classes over causal graphs, i.e., sets of graphs which represent what can be learned from observational data alone, and how these equivalence classes can be refined by adding interventional data.
translated by 谷歌翻译
最大值熵搜索(MES)是贝叶斯优化(BO)的最先进的方法之一。在本文中,我们提出了一种用于受约束问题的MES的新型变型,通过信息下限(CMES-IBO)称为受约束的ME,其基于互信息的下限的蒙特卡罗(MC)估计器(MI)。我们首先定义定义最大值的MI,以便它可以在可行性方面结合不确定性。然后,我们得出了保证非消极性的MI的下限,而传统ME的受约束对应物可以是负的。我们进一步提供了理论分析,确保我们估算者的低变异性,从未针对任何现有的信息理论博进行调查。此外,使用条件MI,我们将CMES-1BO扩展到并联设置,同时保持所需的性质。我们展示了CMES-IBO对多个基准功能和真实问题的有效性。
translated by 谷歌翻译
不依赖虚假相关性的学习预测因素涉及建立因果关系。但是,学习这样的表示非常具有挑战性。因此,我们制定了从高维数据中学习因果表示的问题,并通过合成数据研究因果恢复。这项工作引入了贝叶斯因果发现的潜在变量解码器模型BCD,并在轻度监督和无监督的环境中进行实验。我们提出了一系列合成实验,以表征因果发现的重要因素,并表明将已知的干预靶标用作标签有助于无监督的贝叶斯推断,对线性高斯添加噪声潜在结构性因果模型的结构和参数。
translated by 谷歌翻译
Inferring causal structure poses a combinatorial search problem that typically involves evaluating structures with a score or independence test. The resulting search is costly, and designing suitable scores or tests that capture prior knowledge is difficult. In this work, we propose to amortize causal structure learning. Rather than searching over structures, we train a variational inference model to directly predict the causal structure from observational or interventional data. This allows our inference model to acquire domain-specific inductive biases for causal discovery solely from data generated by a simulator, bypassing both the hand-engineering of suitable score functions and the search over graphs. The architecture of our inference model emulates permutation invariances that are crucial for statistical efficiency in structure learning, which facilitates generalization to significantly larger problem instances than seen during training. On synthetic data and semisynthetic gene expression data, our models exhibit robust generalization capabilities when subject to substantial distribution shifts and significantly outperform existing algorithms, especially in the challenging genomics domain. Our code and models are publicly available at: https://github.com/larslorch/avici.
translated by 谷歌翻译
贝叶斯优化(BO)被广泛用于优化随机黑匣子功能。尽管大多数BO方法都集中在优化条件期望上,但许多应用程序都需要规避风险的策略,并且需要考虑分配尾巴的替代标准。在本文中,我们提出了针对贝叶斯分位数和预期回归的新变异模型,这些模型非常适合异形的噪声设置。我们的模型分别由有条件分位数(或期望)的两个潜在高斯过程和不对称可能性函数的比例参数组成。此外,我们提出了基于最大值熵搜索和汤普森采样的两种BO策略,这些策略是针对此类型号量身定制的,可以容纳大量点。与现有的BO进行规避风险优化的方法相反,我们的策略可以直接针对分位数和预期进行优化,而无需复制观测值或假设噪声的参数形式。如实验部分所示,所提出的方法清楚地表现出异质的非高斯案例中的最新状态。
translated by 谷歌翻译
本文提出了一种新的因果发现方法,即结构不可知的建模(SAM)。SAM利用条件独立性和分布不对称性,旨在从观察数据中找到潜在的因果结构。该方法基于不同玩家之间的游戏,该游戏将每个变量分布有条件地作为神经网估算,而对手则旨在区分生成的数据与原始数据。结合分布估计,稀疏性和无环限制的学习标准用于通过随机梯度下降来实施图形结构和参数的优化。SAM在合成和真实数据上进行了实验验证。
translated by 谷歌翻译
因果表示学习是识别基本因果变量及其从高维观察(例如图像)中的关系的任务。最近的工作表明,可以从观测的时间序列中重建因果变量,假设它们之间没有瞬时因果关系。但是,在实际应用中,我们的测量或帧速率可能比许多因果效应要慢。这有效地产生了“瞬时”效果,并使以前的可识别性结果无效。为了解决这个问题,我们提出了ICITRI,这是一种因果表示学习方法,当具有已知干预目标的完美干预措施时,可以在时间序列中处理瞬时效应。 Icitris从时间观察中识别因果因素,同时使用可区分的因果发现方法来学习其因果图。在三个视频数据集的实验中,Icitris准确地识别了因果因素及其因果图。
translated by 谷歌翻译
计算高效的非近视贝叶斯优化(BO)的最新进展提高了传统近视方法的查询效率,如预期的改进,同时仅适度提高计算成本。然而,这些进展在很大程度上是有限的,因为不受约束的优化。对于约束优化,少数现有的非近视博方法需要重量计算。例如,一个现有的非近视约束BO方法[LAM和Willcox,2017]依赖于计算昂贵的不可靠的暴力衍生物的无可靠性衍生物优化蒙特卡罗卷展卷采集功能。使用Reparameterization技巧进行更有效的基于衍生物的优化的方法,如在不受约束的环境中,如样本平均近似和无限扰动分析,不扩展:约束在取样的采集功能表面中引入阻碍其优化的不连续性。此外,我们认为非近视在受限制问题中更为重要,因为违反限制的恐惧将近视方法推动了可行和不可行区域之间的边界,减缓了具有严格约束的最佳解决方案的发现。在本文中,我们提出了一种计算的有效的两步保护受限贝叶斯优化采集功能(2-OPT-C)支持顺序和批处理设置。为了实现快速采集功能优化,我们开发了一种新的基于似然比的非偏见估计,其两步最佳采集函数的梯度不使用Reparameterization技巧。在数值实验中,2-OPT-C通常通过先前的方法通过2倍或更多的查询效率,并且在某些情况下通过10倍或更大。
translated by 谷歌翻译
State-of-the-art causal discovery methods usually assume that the observational data is complete. However, the missing data problem is pervasive in many practical scenarios such as clinical trials, economics, and biology. One straightforward way to address the missing data problem is first to impute the data using off-the-shelf imputation methods and then apply existing causal discovery methods. However, such a two-step method may suffer from suboptimality, as the imputation algorithm may introduce bias for modeling the underlying data distribution. In this paper, we develop a general method, which we call MissDAG, to perform causal discovery from data with incomplete observations. Focusing mainly on the assumptions of ignorable missingness and the identifiable additive noise models (ANMs), MissDAG maximizes the expected likelihood of the visible part of observations under the expectation-maximization (EM) framework. In the E-step, in cases where computing the posterior distributions of parameters in closed-form is not feasible, Monte Carlo EM is leveraged to approximate the likelihood. In the M-step, MissDAG leverages the density transformation to model the noise distributions with simpler and specific formulations by virtue of the ANMs and uses a likelihood-based causal discovery algorithm with directed acyclic graph constraint. We demonstrate the flexibility of MissDAG for incorporating various causal discovery algorithms and its efficacy through extensive simulations and real data experiments.
translated by 谷歌翻译
采集函数是贝叶斯优化(BO)中的关键组成部分,通常可以写为在替代模型下对效用函数的期望。但是,为了确保采集功能是可以优化的,必须对替代模型和实用程序功能进行限制。为了将BO扩展到更广泛的模型和实用程序,我们提出了不含可能性的BO(LFBO),这是一种基于无似然推理的方法。 LFBO直接对采集函数进行建模,而无需单独使用概率替代模型进行推断。我们表明,可以将计算LFBO中的采集函数缩小为优化加权分类问题,而权重对应于所选择的实用程序。通过为预期改进选择实用程序功能,LFBO在几个现实世界优化问题上都优于各种最新的黑盒优化方法。 LFBO还可以有效利用目标函数的复合结构,从而进一步改善了其遗憾。
translated by 谷歌翻译
在贝叶斯结构学习中,我们有兴趣从数据中推断出贝叶斯网络的定向无环图(DAG)结构。由于组合较大的样本空间,定义这种分布非常具有挑战性,并且通常需要基于MCMC的近似值。最近,已引入了一种新型的概率模型,称为生成流网络(GFLOWNETS),作为离散和复合对象(例如图形)生成建模的一般框架。在这项工作中,我们建议使用GFLOWNET作为MCMC的替代方案,以近似贝叶斯网络结构的后验分布,给定观测数据集。从该近似分布中生成样本DAG被视为一个顺序决策问题,在该问题中,该图是根据学习的过渡概率一次构造一个边缘的。通过对模拟和真实数据的评估,我们表明我们的方法称为dag-gflownet,可以准确地近似DAG,并且它可以与基于MCMC或变异推断的其他方法进行比较。
translated by 谷歌翻译
因果效应估计对于自然和社会科学中的许多任务很重要。但是,如果没有做出强大的,通常无法测试的假设,就无法从观察数据中识别效果。我们考虑了部分识别问题的算法,当未衡量的混淆使鉴定不可能鉴定时,多变量,连续处理的界限治疗效果。我们考虑一个框架,即可观察的证据与基于规范标准在因果模型中编码的约束的含义相匹配。这纯粹是基于生成模型来概括经典方法。将因果关系施放为在受约束优化问题中的目标函数,我们将灵活的学习算法与蒙特卡洛方法相结合,以随机因果节目的名义实施解决方案家族。特别是,我们提出了可以通过因果或观察到的数据模型而没有可能性功能的参数功能的这种约束优化问题的方式,从而降低了任务的计算和统计复杂性。
translated by 谷歌翻译