我们概述了如何创建一种机制,该机制提供了一种最佳的方式,从任意的专家组中引发了一种任意逻辑命题的真理的可能性以及具有明确形式并解释这种概率的集体信息。也就是说,我们为开发自我解决的预测市场的可能性提供了强有力的论点,可以激励专家之间的直接信息交流。这样的系统尤其可以激励来自世界各地的专家以非常有效的方式共同解决科学或医学问题。在我们对真实专家的主要考虑中,他们不认为他们是贝叶斯人,其行为是由满足冯·诺伊曼(Von Neumann)的公用事业所描述的,仅在本地仅在本地公理。
translated by 谷歌翻译
我们回顾了有关模型的文献,这些文献试图解释具有金钱回报的正常形式游戏所描述的社交互动中的人类行为。我们首先涵盖社会和道德偏好。然后,我们专注于日益增长的研究,表明人们对描述行动的语言做出反应,尤其是在激活道德问题时。最后,我们认为行为经济学正处于向基于语言的偏好转变的范式中,这将需要探索新的模型和实验设置。
translated by 谷歌翻译
不同的代理需要进行预测。他们观察到相同的数据,但有不同的模型:他们预测使用不同的解释变量。我们研究哪个代理商认为它们具有最佳的预测能力 - 通过最小的主观后均匀平均平方预测误差来衡量 - 并且显示它如何取决于样本大小。使用小样品,我们呈现结果表明它是使用低维模型的代理。对于大型样品,通常是具有高维模型的代理,可能包括无关的变量,但从未排除相关的变量。我们将结果应用于拍卖生产资产拍卖中的获胜模型,以争辩于企业家和具有简单模型的投资者将在新部门过度代表,并了解解释横断面变异的“因素”的扩散资产定价文学中的预期股票回报。
translated by 谷歌翻译
机器学习通常以经典的概率理论为前提,这意味着聚集是基于期望的。现在有多种原因可以激励人们将经典概率理论作为机器学习的数学基础。我们系统地检查了一系列强大而丰富的此类替代品,即各种称为光谱风险度量,Choquet积分或Lorentz规范。我们提出了一系列的表征结果,并演示了使这个光谱家族如此特别的原因。在此过程中,我们证明了所有连贯的风险度量的自然分层,从它们通过利用重新安排不变性Banach空间理论的结果来诱导的上层概率。我们凭经验证明了这种新的不确定性方法如何有助于解决实用的机器学习问题。
translated by 谷歌翻译
保证案件旨在为其最高主张的真理提供合理的信心,这通常涉及安全或保障。那么一个自然的问题是,案件提供了“多少”信心?我们认为,置信度不能简化为单个属性或测量。取而代之的是,我们建议它应该基于以三种不同观点的属性为基础:正面,消极和残留疑问。积极的观点考虑了该案件的证据和总体论点结合起来的程度,以表明其主张的信念是正当的。我们为理由设置了一个高标准,要求它是不可行的。对此的主要积极度量是健全性,它将论点解释为逻辑证明。对证据的信心可以概率地表达,我们使用确认措施来确保证据的“权重”跨越了一定的阈值。此外,可以通过使用概率逻辑的参数步骤从证据中汇总概率,以产生我们所谓的索赔概率估值。负面观点记录了对案件的怀疑和挑战,通常表示为叛逆者及其探索和解决。保证开发商必须防止确认偏见,并应在制定案件时大力探索潜在的叛逆者,并应记录下来及其解决方案,以避免返工并帮助审阅者。残留疑问:世界不确定,因此并非所有潜在的叛逆者都可以解决。我们探索风险,可能认为它们是可以接受或不可避免的。但是,至关重要的是,这些判断是有意识的判断,并且在保证案例中记录下来。本报告详细介绍了这些观点,并指示了我们的保证2.0的原型工具集如何协助他们的评估。
translated by 谷歌翻译
基于AI和机器学习的决策系统已在各种现实世界中都使用,包括医疗保健,执法,教育和金融。不再是牵强的,即设想一个未来,自治系统将推动整个业务决策,并且更广泛地支持大规模决策基础设施以解决社会最具挑战性的问题。当人类做出决定时,不公平和歧视的问题普遍存在,并且当使用几乎没有透明度,问责制和公平性的机器做出决定时(或可能会放大)。在本文中,我们介绍了\ textit {Causal公平分析}的框架,目的是填补此差距,即理解,建模,并可能解决决策设置中的公平性问题。我们方法的主要见解是将观察到数据中存在的差异的量化与基本且通常是未观察到的因果机制收集的因果机制的收集,这些机制首先会产生差异,挑战我们称之为因果公平的基本问题分析(FPCFA)。为了解决FPCFA,我们研究了分解差异和公平性的经验度量的问题,将这种变化归因于结构机制和人群的不同单位。我们的努力最终达到了公平地图,这是组织和解释文献中不同标准之间关系的首次系统尝试。最后,我们研究了进行因果公平分析并提出一本公平食谱的最低因果假设,该假设使数据科学家能够评估不同影响和不同治疗的存在。
translated by 谷歌翻译
为什么普通语言模糊不清?我们认为,在合作扬声器没有完全了解世界的情况下,使用模糊表达可以在真实性(Gricean质量)和信息性之间提供最佳权衡(Gricean数量)。专注于诸如“周围”的近似的表达,这表明他们允许扬声器传达间接概率信息,这种信息可以使听众更准确地表示发言者可用的信息的信息。更精确的表达将是(之间的间隔“)。也就是说,模糊的句子可以比他们精确的对应物更有信息。我们对“周围”解释的概率处理,并提供了解释和使用“围绕” - 理性语音法(RSA)框架的典范。在我们的账户中,扬声器分配事项的形状不是由RSA框架标准用于模糊谓词的词汇不确定性模型的方式预测。我们利用我们的方法绘制关于模糊表达的语义灵活性的进一步教训及其对更精确的含义的不可缩短。
translated by 谷歌翻译
对未来观察的预测是一个重要且具有挑战性的问题。分别量化预测不确定性使用预测区域和预测分布的两种主流方法,后者认为更具信息性,因为它可以执行其他与预测相关的任务。有效性的标准概念(我们在这里称为1型有效性)着重于预测区域的覆盖范围,而与预测分布执行的其他与预测相关的任务相关的有效性概念则缺乏。在这里,我们提出了一个新概念,称为2型有效性,与这些其他预测任务有关。我们建立了2型有效性和相干性能之间的联系,并表明为实现它而需要不精确的概率考虑因素。我们继续表明,可以通过将共形预测输出作为辅音合理性度量的轮廓函数来实现两种类型的预测有效性。我们还基于新的非参数推论模型构建提供了保​​形预测的替代表征,其中辅音的出现是自然的,并证明了其有效性。
translated by 谷歌翻译
There has been a recent resurgence in the area of explainable artificial intelligence as researchers and practitioners seek to make their algorithms more understandable. Much of this research is focused on explicitly explaining decisions or actions to a human observer, and it should not be controversial to say that looking at how humans explain to each other can serve as a useful starting point for explanation in artificial intelligence. However, it is fair to say that most work in explainable artificial intelligence uses only the researchers' intuition of what constitutes a 'good' explanation. There exists vast and valuable bodies of research in philosophy, psychology, and cognitive science of how people define, generate, select, evaluate, and present explanations, which argues that people employ certain cognitive biases and social expectations towards the explanation process. This paper argues that the field of explainable artificial intelligence should build on this existing research, and reviews relevant papers from philosophy, cognitive psychology/science, and social psychology, which study these topics. It draws out some important findings, and discusses ways that these can be infused with work on explainable artificial intelligence.
translated by 谷歌翻译
This work shows how to leverage causal inference to understand the behavior of complex learning systems interacting with their environment and predict the consequences of changes to the system. Such predictions allow both humans and algorithms to select the changes that would have improved the system performance. This work is illustrated by experiments on the ad placement system associated with the Bing search engine.
translated by 谷歌翻译
大多数在线平台都在努力从与用户的互动中学习,许多人从事探索:为了获取新信息而做出潜在的次优选择。我们研究探索与竞争之间的相互作用:这样的平台如何平衡学习探索和用户的竞争。在这里,用户扮演三个不同的角色:他们是产生收入的客户,他们是学习的数据来源,并且是自私的代理商,可以在竞争平台中进行选择。我们考虑了一种风格化的双重垄断模型,其中两家公司面临着相同的多军强盗问题。用户一一到达,并在两家公司之间进行选择,因此,只有在选择它的情况下,每个公司都在其强盗问题上取得进展。通过理论结果和数值模拟的混合,我们研究了竞争是否会激发更好的Bandit算法的采用,以及它是否导致用户增加福利。我们发现,Stark竞争会导致公司致力于导致低福利的“贪婪”强盗算法。但是,通过向公司提供一些“免费”用户来激励更好的探索策略并增加福利来削弱竞争。我们调查了削弱竞争的两个渠道:放松用户的理性并为一家公司带来首次推广优势。我们的发现与“竞争与创新”关系密切相关,并阐明了数字经济中的第一步优势。
translated by 谷歌翻译
This review presents empirical researchers with recent advances in causal inference, and stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both.
translated by 谷歌翻译
Virtually all machine learning tasks are characterized using some form of loss function, and "good performance" is typically stated in terms of a sufficiently small average loss, taken over the random draw of test data. While optimizing for performance on average is intuitive, convenient to analyze in theory, and easy to implement in practice, such a choice brings about trade-offs. In this work, we survey and introduce a wide variety of non-traditional criteria used to design and evaluate machine learning algorithms, place the classical paradigm within the proper historical context, and propose a view of learning problems which emphasizes the question of "what makes for a desirable loss distribution?" in place of tacit use of the expected loss.
translated by 谷歌翻译
Uncertainty is prevalent in engineering design, statistical learning, and decision making broadly. Due to inherent risk-averseness and ambiguity about assumptions, it is common to address uncertainty by formulating and solving conservative optimization models expressed using measure of risk and related concepts. We survey the rapid development of risk measures over the last quarter century. From its beginning in financial engineering, we recount their spread to nearly all areas of engineering and applied mathematics. Solidly rooted in convex analysis, risk measures furnish a general framework for handling uncertainty with significant computational and theoretical advantages. We describe the key facts, list several concrete algorithms, and provide an extensive list of references for further reading. The survey recalls connections with utility theory and distributionally robust optimization, points to emerging applications areas such as fair machine learning, and defines measures of reliability.
translated by 谷歌翻译
我们基于电子价值开发假设检测理论,这是一种与p值不同的证据,允许毫不费力地结合来自常见场景中的几项研究的结果,其中决定执行新研究可能取决于以前的结果。基于E-V值的测试是安全的,即它们在此类可选的延续下保留I型错误保证。我们将增长速率最优性(GRO)定义为可选的连续上下文中的电力模拟,并且我们展示了如何构建GRO E-VARIABLE,以便为复合空缺和替代,强调模型的常规测试问题,并强调具有滋扰参数的模型。 GRO E值采取具有特殊前瞻的贝叶斯因子的形式。我们使用几种经典示例说明了该理论,包括一个样本安全T检验(其中右哈尔前方的右手前锋为GE)和2x2差价表(其中GRE之前与标准前沿不同)。分享渔业,奈曼和杰弗里斯·贝叶斯解释,电子价值观和相应的测试可以提供所有三所学校的追随者可接受的方法。
translated by 谷歌翻译
个人概率是指仅实现一次的结果的概率:明天下雨的可能性,爱丽丝在未来12个月内死亡的可能性,鲍勃在未来18个月内因暴力犯罪而被捕的可能性等等。个人概率从根本上是不可知的。但是,我们表明,有两个在数据分发中的数据或如何从数据分发中进行采样的当事方不同意在如何建模个人概率上不同意。这是因为实质上不同意的任何两个模型的个人概率模型都可以用来凭经验伪造和改善两个模型之一。在“和解”过程中,这可以有效地迭代,该过程导致双方同意的模型优于他们开始的模型,并且(几乎)本身(几乎)都同意了各个概率(几乎)到处的预测。我们得出的结论是,尽管个人概率是不可知的,但它们是通过必须导致共识的计算和数据有效过程来竞争的。因此,我们无法发现自己​​有两个同样准确且不可解决的模型,这些模型在其预测中基本上不同意 - 为有时所谓的预测性或模型多样性问题提供答案。
translated by 谷歌翻译
我们探索了一个新的强盗实验模型,其中潜在的非组织序列会影响武器的性能。上下文 - 统一算法可能会混淆,而那些执行正确的推理面部信息延迟的算法。我们的主要见解是,我们称之为Deconfounst Thompson采样的算法在适应性和健壮性之间取得了微妙的平衡。它的适应性在易于固定实例中带来了最佳效率,但是在硬性非平稳性方面显示出令人惊讶的弹性,这会导致其他自适应算法失败。
translated by 谷歌翻译
现有的制定公平计算定义的努力主要集中在平等的分布概念上,在这种情况下,平等是由系统中给出的资源或决策定义的。然而,现有的歧视和不公正通常是社会关系不平等的结果,而不是资源分配不平等。在这里,我们展示了对公平和平等的现有计算和经济定义的优化,无法防止不平等的社会关系。为此,我们提供了一个在简单的招聘市场中具有自我融合平衡的示例,该市场在关系上不平等,但满足了现有的公平分布概念。在此过程中,我们引入了公然的关系不公平的概念,对完整信息游戏进行了讨论,并讨论了该定义如何有助于启动一种将关系平等纳入计算系统的新方法。
translated by 谷歌翻译
In this paper, we provide a theoretical framework to analyze an agent who misinterprets or misperceives the true decision problem she faces. Within this framework, we show that a wide range of behavior observed in experimental settings manifest as failures to perceive implications, in other words, to properly account for the logical relationships between various payoff relevant contingencies. We present behavioral characterizations corresponding to several benchmarks of logical sophistication and show how it is possible to identify which implications the agent fails to perceive. Thus, our framework delivers both a methodology for assessing an agent's level of contingent thinking and a strategy for identifying her beliefs in the absence full rationality.
translated by 谷歌翻译
The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often referred to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of attempts so far at handling uncertainty in general and formalizing this distinction in particular.
translated by 谷歌翻译