深度神经网络在许多以数据驱动和预测为导向的应用中表现出了出色的性能,有时甚至比人类表现更好。但是,他们最重要的缺点是缺乏解释性,这使得它们在许多现实世界中的吸引力降低了。当与犯罪判断,财务分析和医学诊断等不确定的道德问题或环境因素有关时,必须挖掘模型预测(解释模型知识)的证据,以说服人类。因此,研究如何解释模型知识对于学术研究和实际应用都至关重要。
translated by 谷歌翻译
解释深度卷积神经网络最近引起了人们的关注,因为它有助于了解网络的内部操作以及为什么它们做出某些决定。显着地图强调了与网络决策的主要连接的显着区域,是可视化和分析计算机视觉社区深层网络的最常见方法之一。但是,由于未经证实的激活图权重的建议,这些图像没有稳固的理论基础,并且未能考虑每个像素之间的关系,因此现有方法生成的显着图不能表示图像中的真实信息。在本文中,我们开发了一种基于类激活映射的新型事后视觉解释方法,称为Shap-Cam。与以前的基于梯度的方法不同,Shap-Cam通过通过Shapley值获得每个像素的重要性来摆脱对梯度的依赖。我们证明,Shap-Cam可以在解释决策过程中获得更好的视觉性能和公平性。我们的方法在识别和本地化任务方面的表现优于以前的方法。
translated by 谷歌翻译
This paper proposes a novel approach to explain the predictions made by data-driven methods. Since such predictions rely heavily on the data used for training, explanations that convey information about how the training data affects the predictions are useful. The paper proposes a novel approach to quantify how different data-clusters of the training data affect a prediction. The quantification is based on Shapley values, a concept which originates from coalitional game theory, developed to fairly distribute the payout among a set of cooperating players. A player's Shapley value is a measure of that player's contribution. Shapley values are often used to quantify feature importance, ie. how features affect a prediction. This paper extends this to cluster importance, letting clusters of the training data act as players in a game where the predictions are the payouts. The novel methodology proposed in this paper lets us explore and investigate how different clusters of the training data affect the predictions made by any black-box model, allowing new aspects of the reasoning and inner workings of a prediction model to be conveyed to the users. The methodology is fundamentally different from existing explanation methods, providing insight which would not be available otherwise, and should complement existing explanation methods, including explanations based on feature importance.
translated by 谷歌翻译
随着现代复杂的神经网络不断破坏记录并解决更严重的问题,它们的预测也变得越来越少。目前缺乏解释性通常会破坏敏感设置中精确的机器学习工具的部署。在这项工作中,我们提出了一种基于Shapley系数的层次扩展的图像分类的模型 - 不足的解释方法 - 层次结构(H-SHAP)(H-SHAP) - 解决了当前方法的某些局限性。与其他基于沙普利的解释方法不同,H-shap是可扩展的,并且可以计算而无需近似。在某些分布假设下,例如在多个实例学习中常见的假设,H-shap检索了确切的Shapley系数,并具有指数改善的计算复杂性。我们将我们的分层方法与基于Shapley的流行基于Shapley和基于Shapley的方法进行比较,而基于Shapley的方法,医学成像方案以及一般的计算机视觉问题,表明H-Shap在准确性和运行时都超过了最先进的状态。代码和实验已公开可用。
translated by 谷歌翻译
基于Shapley值的功能归因在解释机器学习模型中很受欢迎。但是,从理论和计算的角度来看,它们的估计是复杂的。我们将这种复杂性分解为两个因素:(1)〜删除特征信息的方法,以及(2)〜可拖动估计策略。这两个因素提供了一种天然镜头,我们可以更好地理解和比较24种不同的算法。基于各种特征删除方法,我们描述了多种类型的Shapley值特征属性和计算每个类型的方法。然后,基于可进行的估计策略,我们表征了两个不同的方法家族:模型 - 不合时宜的和模型特定的近似值。对于模型 - 不合稳定的近似值,我们基准了广泛的估计方法,并将其与Shapley值的替代性但等效的特征联系起来。对于特定于模型的近似值,我们阐明了对每种方法的线性,树和深模型的障碍至关重要的假设。最后,我们确定了文献中的差距以及有希望的未来研究方向。
translated by 谷歌翻译
Understanding why a model makes a certain prediction can be as crucial as the prediction's accuracy in many applications. However, the highest accuracy for large modern datasets is often achieved by complex models that even experts struggle to interpret, such as ensemble or deep learning models, creating a tension between accuracy and interpretability. In response, various methods have recently been proposed to help users interpret the predictions of complex models, but it is often unclear how these methods are related and when one method is preferable over another. To address this problem, we present a unified framework for interpreting predictions, SHAP (SHapley Additive exPlanations). SHAP assigns each feature an importance value for a particular prediction. Its novel components include: (1) the identification of a new class of additive feature importance measures, and (2) theoretical results showing there is a unique solution in this class with a set of desirable properties. The new class unifies six existing methods, notable because several recent methods in the class lack the proposed desirable properties. Based on insights from this unification, we present new methods that show improved computational performance and/or better consistency with human intuition than previous approaches.
translated by 谷歌翻译
在许多多机构设置中,参与者可以组建团队以实现可能超过其个人能力的集体成果。衡量代理商的相对贡献并分配促进持续合作的奖励份额是艰巨的任务。合作游戏理论提供了识别分配方案(例如沙普利价值)的解决方案概念,这些概念公平地反映了个人对团队或核心表现的贡献,从而减少了代理人放弃团队的动机。此类方法的应用包括识别有影响力的特征并分享合资企业或团队成立的成本。不幸的是,即使在受限设置中,使用这些解决方案也需要解决计算障碍,因为它们很难计算。在这项工作中,我们展示了如何通过训练神经网络提出公平和稳定的回报分配来将合作游戏理论解决方案蒸馏成学习的模型。我们表明,我们的方法创建的模型可以推广到远离训练分布的游戏,并且可以预测比训练期间观察到的更多玩家的解决方案。我们框架的一个重要应用是可以解释的AI:我们的方法可用于加快在许多情况下的Shapley价值计算。
translated by 谷歌翻译
Besides accuracy, recent studies on machine learning models have been addressing the question on how the obtained results can be interpreted. Indeed, while complex machine learning models are able to provide very good results in terms of accuracy even in challenging applications, it is difficult to interpret them. Aiming at providing some interpretability for such models, one of the most famous methods, called SHAP, borrows the Shapley value concept from game theory in order to locally explain the predicted outcome of an instance of interest. As the SHAP values calculation needs previous computations on all possible coalitions of attributes, its computational cost can be very high. Therefore, a SHAP-based method called Kernel SHAP adopts an efficient strategy that approximate such values with less computational effort. In this paper, we also address local interpretability in machine learning based on Shapley values. Firstly, we provide a straightforward formulation of a SHAP-based method for local interpretability by using the Choquet integral, which leads to both Shapley values and Shapley interaction indices. Moreover, we also adopt the concept of $k$-additive games from game theory, which contributes to reduce the computational effort when estimating the SHAP values. The obtained results attest that our proposal needs less computations on coalitions of attributes to approximate the SHAP values.
translated by 谷歌翻译
即使有效,模型的使用也必须伴随着转换数据的各个级别的理解(上游和下游)。因此,需求增加以定义单个数据与算法可以根据其分析可以做出的选择(例如,一种产品或一种促销报价的建议,或代表风险的保险费率)。模型用户必须确保模型不会区分,并且也可以解释其结果。本文介绍了模型解释的重要性,并解决了模型透明度的概念。在保险环境中,它专门说明了如何使用某些工具来强制执行当今可以利用机器学习的精算模型的控制。在一个简单的汽车保险中损失频率估计的示例中,我们展示了一些解释性方法的兴趣,以适应目标受众的解释。
translated by 谷歌翻译
越来越多的电子健康记录(EHR)数据和深度学习技术进步的越来越多的可用性(DL)已经引发了在开发基于DL的诊断,预后和治疗的DL临床决策支持系统中的研究兴趣激增。尽管承认医疗保健的深度学习的价值,但由于DL的黑匣子性质,实际医疗环境中进一步采用的障碍障碍仍然存在。因此,有一个可解释的DL的新兴需求,它允许最终用户评估模型决策,以便在采用行动之前知道是否接受或拒绝预测和建议。在这篇综述中,我们专注于DL模型在医疗保健中的可解释性。我们首先引入深入解释性的方法,并作为该领域的未来研究人员或临床从业者的方法参考。除了这些方法的细节之外,我们还包括对这些方法的优缺点以及它们中的每个场景都适合的讨论,因此感兴趣的读者可以知道如何比较和选择它们供使用。此外,我们讨论了这些方法,最初用于解决一般域问题,已经适应并应用于医疗保健问题以及如何帮助医生更好地理解这些数据驱动技术。总的来说,我们希望这项调查可以帮助研究人员和从业者在人工智能(AI)和临床领域了解我们为提高其DL模型的可解释性并相应地选择最佳方法。
translated by 谷歌翻译
Explaining machine learning models is an important and increasingly popular area of research interest. The Shapley value from game theory has been proposed as a prime approach to compute feature importance towards model predictions on images, text, tabular data, and recently graph neural networks (GNNs) on graphs. In this work, we revisit the appropriateness of the Shapley value for GNN explanation, where the task is to identify the most important subgraph and constituent nodes for GNN predictions. We claim that the Shapley value is a non-ideal choice for graph data because it is by definition not structure-aware. We propose a Graph Structure-aware eXplanation (GStarX) method to leverage the critical graph structure information to improve the explanation. Specifically, we define a scoring function based on a new structure-aware value from the cooperative game theory proposed by Hamiache and Navarro (HN). When used to score node importance, the HN value utilizes graph structures to attribute cooperation surplus between neighbor nodes, resembling message passing in GNNs, so that node importance scores reflect not only the node feature importance, but also the node structural roles. We demonstrate that GStarX produces qualitatively more intuitive explanations, and quantitatively improves explanation fidelity over strong baselines on chemical graph property prediction and text graph sentiment classification.
translated by 谷歌翻译
While preference modelling is becoming one of the pillars of machine learning, the problem of preference explanation remains challenging and underexplored. In this paper, we propose \textsc{Pref-SHAP}, a Shapley value-based model explanation framework for pairwise comparison data. We derive the appropriate value functions for preference models and further extend the framework to model and explain \emph{context specific} information, such as the surface type in a tennis game. To demonstrate the utility of \textsc{Pref-SHAP}, we apply our method to a variety of synthetic and real-world datasets and show that richer and more insightful explanations can be obtained over the baseline.
translated by 谷歌翻译
We introduce the XPER (eXplainable PERformance) methodology to measure the specific contribution of the input features to the predictive or economic performance of a model. Our methodology offers several advantages. First, it is both model-agnostic and performance metric-agnostic. Second, XPER is theoretically founded as it is based on Shapley values. Third, the interpretation of the benchmark, which is inherent in any Shapley value decomposition, is meaningful in our context. Fourth, XPER is not plagued by model specification error, as it does not require re-estimating the model. Fifth, it can be implemented either at the model level or at the individual level. In an application based on auto loans, we find that performance can be explained by a surprisingly small number of features. XPER decompositions are rather stable across metrics, yet some feature contributions switch sign across metrics. Our analysis also shows that explaining model forecasts and model performance are two distinct tasks.
translated by 谷歌翻译
Artificial intelligence(AI) systems based on deep neural networks (DNNs) and machine learning (ML) algorithms are increasingly used to solve critical problems in bioinformatics, biomedical informatics, and precision medicine. However, complex DNN or ML models that are unavoidably opaque and perceived as black-box methods, may not be able to explain why and how they make certain decisions. Such black-box models are difficult to comprehend not only for targeted users and decision-makers but also for AI developers. Besides, in sensitive areas like healthcare, explainability and accountability are not only desirable properties of AI but also legal requirements -- especially when AI may have significant impacts on human lives. Explainable artificial intelligence (XAI) is an emerging field that aims to mitigate the opaqueness of black-box models and make it possible to interpret how AI systems make their decisions with transparency. An interpretable ML model can explain how it makes predictions and which factors affect the model's outcomes. The majority of state-of-the-art interpretable ML methods have been developed in a domain-agnostic way and originate from computer vision, automated reasoning, or even statistics. Many of these methods cannot be directly applied to bioinformatics problems, without prior customization, extension, and domain adoption. In this paper, we discuss the importance of explainability with a focus on bioinformatics. We analyse and comprehensively overview of model-specific and model-agnostic interpretable ML methods and tools. Via several case studies covering bioimaging, cancer genomics, and biomedical text mining, we show how bioinformatics research could benefit from XAI methods and how they could help improve decision fairness.
translated by 谷歌翻译
机器学习模型,尤其是人工神经网络,越来越多地用于为在各个领域的高风险场景中(从金融服务,公共安全和医疗保健服务)提供信息。尽管神经网络在许多情况下都取得了出色的性能,但它们的复杂性质引起了人们对现实情况下的可靠性,可信赖性和公平性的关注。结果,已经提出了几种A-tostori解释方法来突出影响模型预测的特征。值得注意的是,Shapley的价值 - 一种满足几种理想特性的游戏理论数量 - 在机器学习解释性文献中获得了知名度。然而,更传统上,在统计学习中的特征是通过有条件独立性正式化的,而对其进行测试的标准方法是通过有条件的随机测试(CRT)。到目前为止,有关解释性和特征重要性的这两个观点已被认为是独特的和独立的。在这项工作中,我们表明基于沙普利的解释方法和针对特征重要性的有条件独立性测试密切相关。更确切地说,我们证明,通过类似于CRT的程序实现了一组特定的条件独立性测试,评估了Shapley系数量,以执行特定的条件独立性测试,但用于不同的零假设。此外,获得的游戏理论值上限限制了此类测试的$ p $值。结果,我们授予大型Shapley系数具有精确的统计意义,并具有控制I型错误。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
深度学习的显着成功引起了人们对医学成像诊断的应用的兴趣。尽管最新的深度学习模型在分类不同类型的医学数据方面已经达到了人类水平的准确性,但这些模型在临床工作流程中几乎不采用,这主要是由于缺乏解释性。深度学习模型的黑盒子性提出了制定策略来解释这些模型的决策过程的必要性,从而导致了可解释的人工智能(XAI)主题的创建。在这种情况下,我们对应用于医学成像诊断的XAI进行了详尽的调查,包括视觉,基于示例和基于概念的解释方法。此外,这项工作回顾了现有的医学成像数据集和现有的指标,以评估解释的质量。此外,我们还包括一组基于报告生成的方法的性能比较。最后,还讨论了将XAI应用于医学成像以及有关该主题的未来研究指示的主要挑战。
translated by 谷歌翻译
Shap是一种衡量机器学习模型中可变重要性的流行方法。在本文中,我们研究了用于估计外形评分的算法,并表明它是功能性方差分析分解的转换。我们使用此连接表明,在Shap近似中的挑战主要与选择功能分布的选择以及估计的$ 2^p $ ANOVA条款的数量有关。我们认为,在这种情况下,机器学习解释性和敏感性分析之间的联系是有照明的,但是直接的实际后果并不明显,因为这两个领域面临着不同的约束。机器学习的解释性问题模型可评估,但通常具有数百个(即使不是数千个)功能。敏感性分析通常处理物理或工程的模型,这些模型可能非常耗时,但在相对较小的输入空间上运行。
translated by 谷歌翻译
沙普利价值是衡量单个特征影响的流行方法。尽管Shapley功能归因是基于游戏理论的Desiderata,但在某些机器学习设置中,其某些约束可能不太自然,从而导致不直觉的模型解释。特别是,Shapley值对所有边际贡献都使用相同的权重 - 即,当给出大量其他功能时,当给出少数其他功能时,它具有相同的重要性。如果较大的功能集比较小的功能集更具信息性,则此属性可能是有问题的。我们的工作对沙普利特征归因的潜在局限性进行了严格的分析。我们通过为较小的影响力特征分配较大的属性来确定Shapley值在数学上是次优的设置。在这一观察结果的驱动下,我们提出了加权图,它概括了沙普利的价值,并了解到直接从数据中关注哪些边际贡献。在几个现实世界数据集上,我们证明,与沙普利值确定的功能相比,加权图确定的有影响力的特征可以更好地概括模型的预测。
translated by 谷歌翻译
我们提出了CX-TOM,简短于与理论的理论,一种新的可解释的AI(XAI)框架,用于解释深度卷积神经网络(CNN)制定的决定。与生成解释的XAI中的当前方法形成对比,我们将说明作为迭代通信过程,即对话框,机器和人类用户之间。更具体地说,我们的CX-TOM框架通过调解机器和人类用户的思想之间的差异,在对话中生成解释顺序。为此,我们使用思想理论(汤姆),帮助我们明确地建模人类的意图,通过人类的推断,通过机器推断出人类的思想。此外,大多数最先进的XAI框架提供了基于注意的(或热图)的解释。在我们的工作中,我们表明,这些注意力的解释不足以增加人类信任在潜在的CNN模型中。在CX-TOM中,我们使用命名为您定义的故障行的反事实解释:给定CNN分类模型M预测C_PRED的CNN分类模型M的输入图像I,错误线识别最小的语义级别特征(例如,斑马上的条纹,狗的耳朵),称为可解释的概念,需要从I添加或删除,以便将m的分类类别改变为另一个指定的c_alt。我们认为,由于CX-TOM解释的迭代,概念和反事本质,我们的框架对于专家和非专家用户来说是实用的,更加自然,以了解复杂的深度学习模式的内部运作。广泛的定量和定性实验验证了我们的假设,展示了我们的CX-TOM显着优于最先进的可解释的AI模型。
translated by 谷歌翻译