我们提出了CX-TOM,简短于与理论的理论,一种新的可解释的AI(XAI)框架,用于解释深度卷积神经网络(CNN)制定的决定。与生成解释的XAI中的当前方法形成对比,我们将说明作为迭代通信过程,即对话框,机器和人类用户之间。更具体地说,我们的CX-TOM框架通过调解机器和人类用户的思想之间的差异,在对话中生成解释顺序。为此,我们使用思想理论(汤姆),帮助我们明确地建模人类的意图,通过人类的推断,通过机器推断出人类的思想。此外,大多数最先进的XAI框架提供了基于注意的(或热图)的解释。在我们的工作中,我们表明,这些注意力的解释不足以增加人类信任在潜在的CNN模型中。在CX-TOM中,我们使用命名为您定义的故障行的反事实解释:给定CNN分类模型M预测C_PRED的CNN分类模型M的输入图像I,错误线识别最小的语义级别特征(例如,斑马上的条纹,狗的耳朵),称为可解释的概念,需要从I添加或删除,以便将m的分类类别改变为另一个指定的c_alt。我们认为,由于CX-TOM解释的迭代,概念和反事本质,我们的框架对于专家和非专家用户来说是实用的,更加自然,以了解复杂的深度学习模式的内部运作。广泛的定量和定性实验验证了我们的假设,展示了我们的CX-TOM显着优于最先进的可解释的AI模型。
translated by 谷歌翻译
与此同时,在可解释的人工智能(XAI)的研究领域中,已经开发了各种术语,动机,方法和评估标准。随着XAI方法的数量大大增长,研究人员以及从业者以及从业者需要一种方法:掌握主题的广度,比较方法,并根据特定用例所需的特征选择正确的XAI方法语境。在文献中,可以找到许多不同细节水平和深度水平的XAI方法分类。虽然他们经常具有不同的焦点,但它们也表现出许多重叠点。本文统一了这些努力,并提供了XAI方法的分类,这是关于目前研究中存在的概念的概念。在结构化文献分析和元研究中,我们识别并审查了XAI方法,指标和方法特征的50多个最引用和最新的调查。总结在调查调查中,我们将文章的术语和概念合并为统一的结构化分类。其中的单一概念总计超过50个不同的选择示例方法,我们相应地分类。分类学可以为初学者,研究人员和从业者提供服务作为XAI方法特征和方面的参考和广泛概述。因此,它提供了针对有针对性的,用例导向的基础和上下文敏感的未来研究。
translated by 谷歌翻译
越来越多的电子健康记录(EHR)数据和深度学习技术进步的越来越多的可用性(DL)已经引发了在开发基于DL的诊断,预后和治疗的DL临床决策支持系统中的研究兴趣激增。尽管承认医疗保健的深度学习的价值,但由于DL的黑匣子性质,实际医疗环境中进一步采用的障碍障碍仍然存在。因此,有一个可解释的DL的新兴需求,它允许最终用户评估模型决策,以便在采用行动之前知道是否接受或拒绝预测和建议。在这篇综述中,我们专注于DL模型在医疗保健中的可解释性。我们首先引入深入解释性的方法,并作为该领域的未来研究人员或临床从业者的方法参考。除了这些方法的细节之外,我们还包括对这些方法的优缺点以及它们中的每个场景都适合的讨论,因此感兴趣的读者可以知道如何比较和选择它们供使用。此外,我们讨论了这些方法,最初用于解决一般域问题,已经适应并应用于医疗保健问题以及如何帮助医生更好地理解这些数据驱动技术。总的来说,我们希望这项调查可以帮助研究人员和从业者在人工智能(AI)和临床领域了解我们为提高其DL模型的可解释性并相应地选择最佳方法。
translated by 谷歌翻译
Artificial intelligence(AI) systems based on deep neural networks (DNNs) and machine learning (ML) algorithms are increasingly used to solve critical problems in bioinformatics, biomedical informatics, and precision medicine. However, complex DNN or ML models that are unavoidably opaque and perceived as black-box methods, may not be able to explain why and how they make certain decisions. Such black-box models are difficult to comprehend not only for targeted users and decision-makers but also for AI developers. Besides, in sensitive areas like healthcare, explainability and accountability are not only desirable properties of AI but also legal requirements -- especially when AI may have significant impacts on human lives. Explainable artificial intelligence (XAI) is an emerging field that aims to mitigate the opaqueness of black-box models and make it possible to interpret how AI systems make their decisions with transparency. An interpretable ML model can explain how it makes predictions and which factors affect the model's outcomes. The majority of state-of-the-art interpretable ML methods have been developed in a domain-agnostic way and originate from computer vision, automated reasoning, or even statistics. Many of these methods cannot be directly applied to bioinformatics problems, without prior customization, extension, and domain adoption. In this paper, we discuss the importance of explainability with a focus on bioinformatics. We analyse and comprehensively overview of model-specific and model-agnostic interpretable ML methods and tools. Via several case studies covering bioimaging, cancer genomics, and biomedical text mining, we show how bioinformatics research could benefit from XAI methods and how they could help improve decision fairness.
translated by 谷歌翻译
深度学习的显着成功引起了人们对医学成像诊断的应用的兴趣。尽管最新的深度学习模型在分类不同类型的医学数据方面已经达到了人类水平的准确性,但这些模型在临床工作流程中几乎不采用,这主要是由于缺乏解释性。深度学习模型的黑盒子性提出了制定策略来解释这些模型的决策过程的必要性,从而导致了可解释的人工智能(XAI)主题的创建。在这种情况下,我们对应用于医学成像诊断的XAI进行了详尽的调查,包括视觉,基于示例和基于概念的解释方法。此外,这项工作回顾了现有的医学成像数据集和现有的指标,以评估解释的质量。此外,我们还包括一组基于报告生成的方法的性能比较。最后,还讨论了将XAI应用于医学成像以及有关该主题的未来研究指示的主要挑战。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
Explainable AI (XAI) is widely viewed as a sine qua non for ever-expanding AI research. A better understanding of the needs of XAI users, as well as human-centered evaluations of explainable models are both a necessity and a challenge. In this paper, we explore how HCI and AI researchers conduct user studies in XAI applications based on a systematic literature review. After identifying and thoroughly analyzing 85 core papers with human-based XAI evaluations over the past five years, we categorize them along the measured characteristics of explanatory methods, namely trust, understanding, fairness, usability, and human-AI team performance. Our research shows that XAI is spreading more rapidly in certain application domains, such as recommender systems than in others, but that user evaluations are still rather sparse and incorporate hardly any insights from cognitive or social sciences. Based on a comprehensive discussion of best practices, i.e., common models, design choices, and measures in user studies, we propose practical guidelines on designing and conducting user studies for XAI researchers and practitioners. Lastly, this survey also highlights several open research directions, particularly linking psychological science and human-centered XAI.
translated by 谷歌翻译
尽管有无数的同伴审查的论文,证明了新颖的人工智能(AI)基于大流行期间的Covid-19挑战的解决方案,但很少有临床影响。人工智能在Covid-19大流行期间的影响因缺乏模型透明度而受到极大的限制。这种系统审查考察了在大流行期间使用可解释的人工智能(Xai)以及如何使用它可以克服现实世界成功的障碍。我们发现,Xai的成功使用可以提高模型性能,灌输信任在最终用户,并提供影响用户决策所需的值。我们将读者介绍给常见的XAI技术,其实用程序以及其应用程序的具体例子。 XAI结果的评估还讨论了最大化AI的临床决策支持系统的价值的重要步骤。我们说明了Xai的古典,现代和潜在的未来趋势,以阐明新颖的XAI技术的演变。最后,我们在最近出版物支持的实验设计过程中提供了建议的清单。潜在解决方案的具体示例也解决了AI解决方案期间的共同挑战。我们希望本次审查可以作为提高未来基于AI的解决方案的临床影响的指导。
translated by 谷歌翻译
这项调查回顾了对基于视觉的自动驾驶系统进行行为克隆训练的解释性方法。解释性的概念具有多个方面,并且需要解释性的驾驶强度是一种安全至关重要的应用。从几个研究领域收集贡献,即计算机视觉,深度学习,自动驾驶,可解释的AI(X-AI),这项调查可以解决几点。首先,它讨论了从自动驾驶系统中获得更多可解释性和解释性的定义,上下文和动机,以及该应用程序特定的挑战。其次,以事后方式为黑盒自动驾驶系统提供解释的方法是全面组织和详细的。第三,详细介绍和讨论了旨在通过设计构建更容易解释的自动驾驶系统的方法。最后,确定并检查了剩余的开放挑战和潜在的未来研究方向。
translated by 谷歌翻译
众所周知,端到端的神经NLP体系结构很难理解,这引起了近年来为解释性建模的许多努力。模型解释的基本原则是忠诚,即,解释应准确地代表模型预测背后的推理过程。这项调查首先讨论了忠诚的定义和评估及其对解释性的意义。然后,我们通过将方法分为五类来介绍忠实解释的最新进展:相似性方法,模型内部结构的分析,基于反向传播的方法,反事实干预和自我解释模型。每个类别将通过其代表性研究,优势和缺点来说明。最后,我们从它们的共同美德和局限性方面讨论了上述所有方法,并反思未来的工作方向忠实的解释性。对于有兴趣研究可解释性的研究人员,这项调查将为该领域提供可访问且全面的概述,为进一步探索提供基础。对于希望更好地了解自己的模型的用户,该调查将是一项介绍性手册,帮助选择最合适的解释方法。
translated by 谷歌翻译
深层神经网络以其对各种机器学习和人工智能任务的精湛处理而闻名。但是,由于其过度参数化的黑盒性质,通常很难理解深层模型的预测结果。近年来,已经提出了许多解释工具来解释或揭示模型如何做出决策。在本文中,我们回顾了这一研究,并尝试进行全面的调查。具体来说,我们首先介绍并阐明了人们通常会感到困惑的两个基本概念 - 解释和解释性。为了解决解释中的研究工作,我们通过提出新的分类法来阐述许多解释算法的设计。然后,为了了解解释结果,我们还调查了评估解释算法的性能指标。此外,我们总结了使用“可信赖”解释算法评估模型的解释性的当前工作。最后,我们审查并讨论了深层模型的解释与其他因素之间的联系,例如对抗性鲁棒性和从解释中学习,并介绍了一些开源库,以解释算法和评估方法。
translated by 谷歌翻译
We propose a technique for producing 'visual explanations' for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent and explainable.Our approach -Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say 'dog' in a classification network or a sequence of words in captioning network) flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept.Unlike previous approaches, Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fullyconnected layers (e.g. VGG), (2) CNNs used for structured outputs (e.g. captioning), (3) CNNs used in tasks with multimodal inputs (e.g. visual question answering) or reinforcement learning, all without architectural changes or re-training. We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative vi-
translated by 谷歌翻译
最近的自主代理和机器人的应用,如自动驾驶汽车,情景的培训师,勘探机器人和服务机器人带来了关注与当前生成人工智能(AI)系统相关的至关重要的信任相关挑战。尽管取得了巨大的成功,基于连接主义深度学习神经网络方法的神经网络方法缺乏解释他们对他人的决策和行动的能力。没有符号解释能力,它们是黑色盒子,这使得他们的决定或行动不透明,这使得难以信任它们在安全关键的应用中。最近对AI系统解释性的立场目睹了可解释的人工智能(XAI)的几种方法;然而,大多数研究都专注于应用于计算科学中的数据驱动的XAI系统。解决越来越普遍的目标驱动器和机器人的研究仍然缺失。本文评论了可解释的目标驱动智能代理和机器人的方法,重点是解释和沟通代理人感知功能的技术(示例,感官和愿景)和认知推理(例如,信仰,欲望,意图,计划和目标)循环中的人类。审查强调了强调透明度,可辨与和持续学习以获得解释性的关键策略。最后,本文提出了解释性的要求,并提出了用于实现有效目标驱动可解释的代理和机器人的路线图。
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)在网络安全挑战中的应用已在行业和学术界的吸引力,部分原因是对关键系统(例如云基础架构和政府机构)的广泛恶意软件攻击。入侵检测系统(IDS)使用某些形式的AI,由于能够以高预测准确性处理大量数据,因此获得了广泛的采用。这些系统托管在组织网络安全操作中心(CSOC)中,作为一种防御工具,可监视和检测恶意网络流,否则会影响机密性,完整性和可用性(CIA)。 CSOC分析师依靠这些系统来决定检测到的威胁。但是,使用深度学习(DL)技术设计的IDS通常被视为黑匣子模型,并且没有为其预测提供理由。这为CSOC分析师造成了障碍,因为他们无法根据模型的预测改善决策。解决此问题的一种解决方案是设计可解释的ID(X-IDS)。这项调查回顾了可解释的AI(XAI)的最先进的ID,目前的挑战,并讨论了这些挑战如何涉及X-ID的设计。特别是,我们全面讨论了黑匣子和白盒方法。我们还在这些方法之间的性能和产生解释的能力方面提出了权衡。此外,我们提出了一种通用体系结构,该建筑认为人类在循环中,该架构可以用作设计X-ID时的指南。研究建议是从三个关键观点提出的:需要定义ID的解释性,需要为各种利益相关者量身定制的解释以及设计指标来评估解释的需求。
translated by 谷歌翻译
随着AI系统表现出越来越强烈的预测性能,它们的采用已经在许多域中种植。然而,在刑事司法和医疗保健等高赌场域中,由于安全,道德和法律问题,往往是完全自动化的,但是完全手工方法可能是不准确和耗时的。因此,对研究界的兴趣日益增长,以增加人力决策。除了为此目的开发AI技术之外,人民AI决策的新兴领域必须采用实证方法,以形成对人类如何互动和与AI合作做出决定的基础知识。为了邀请和帮助结构研究努力了解理解和改善人为 - AI决策的研究,我们近期对本课题的实证人体研究的文献。我们总结了在三个重要方面的100多篇论文中的研究设计选择:(1)决定任务,(2)AI模型和AI援助要素,以及(3)评估指标。对于每个方面,我们总结了当前的趋势,讨论了现场当前做法中的差距,并列出了未来研究的建议。我们的调查强调了开发共同框架的需要考虑人类 - AI决策的设计和研究空间,因此研究人员可以在研究设计中进行严格的选择,研究界可以互相构建并产生更广泛的科学知识。我们还希望这项调查将成为HCI和AI社区的桥梁,共同努力,相互塑造人类决策的经验科学和计算技术。
translated by 谷歌翻译
自2015年首次介绍以来,深入增强学习(DRL)方案的使用已大大增加。尽管在许多不同的应用中使用了使用,但他们仍然存在缺乏可解释性的问题。面包缺乏对研究人员和公众使用DRL解决方案的使用。为了解决这个问题,已经出现了可解释的人工智能(XAI)领域。这是各种不同的方法,它们希望打开DRL黑框,范围从使用可解释的符号决策树到诸如Shapley值之类的数值方法。这篇评论研究了使用哪些方法以及使用了哪些应用程序。这样做是为了确定哪些模型最适合每个应用程序,或者是否未充分利用方法。
translated by 谷歌翻译
人工智能被出现为众多临床应用诊断和治疗决策的有用援助。由于可用数据和计算能力的快速增加,深度神经网络的性能与许多任务中的临床医生相同或更好。为了符合信任AI的原则,AI系统至关重要的是透明,强大,公平和确保责任。由于对决策过程的具体细节缺乏了解,目前的深神经系统被称为黑匣子。因此,需要确保在常规临床工作流中纳入常规神经网络之前的深度神经网络的可解释性。在这一叙述审查中,我们利用系统的关键字搜索和域专业知识来确定已经基于所产生的解释和技术相似性的类型的医学图像分析应用的深度学习模型来确定九种不同类型的可解释方法。此外,我们报告了评估各种可解释方法产生的解释的进展。最后,我们讨论了局限性,提供了利用可解释性方法和未来方向的指导,了解医学成像分析深度神经网络的解释性。
translated by 谷歌翻译
由于自然语言处理和基于计算机视觉模型的显着进步,视觉问题应答(VQA)系统变得越来越聪明,高级。然而,在处理相对复杂的问题时,它们仍然易于出错。因此,在采用结果之前了解VQA模型的行为非常重要。在本文中,我们通过生成反事实图像来引入VQA模型的可解释方法。具体地,所生成的图像应该具有对原始图像具有最小可能的改变,并引导VQA模型来提供不同的答案。此外,我们的方法确保生成的图像是逼真的。由于无法使用定量度量来评估模型的可解释性,因此我们进行了用户学习,以评估我们方法的不同方面。除了在单个图像上解释VQA模型的结果,所获得的结果和讨论还提供了对VQA模型的行为的广泛解释。
translated by 谷歌翻译
近年来,可解释的人工智能(XAI)已成为一个非常适合的框架,可以生成人类对“黑盒”模型的可理解解释。在本文中,一种新颖的XAI视觉解释算法称为相似性差异和唯一性(SIDU)方法,该方法可以有效地定位负责预测的整个对象区域。通过各种计算和人类主题实验分析了SIDU算法的鲁棒性和有效性。特别是,使用三种不同类型的评估(应用,人类和功能地面)评估SIDU算法以证明其出色的性能。在对“黑匣子”模型的对抗性攻击的情况下,进一步研究了Sidu的鲁棒性,以更好地了解其性能。我们的代码可在:https://github.com/satyamahesh84/sidu_xai_code上找到。
translated by 谷歌翻译
去年的特征是不透明的自动决策支持系统(例如深神经网络(DNNS))激增。尽管它们具有出色的概括和预测技能,但其功能不允许对其行为获得详细的解释。由于不透明的机器学习模型越来越多地用于在关键环境中做出重要的预测,因此危险是创建和使用不合理或合法的决策。因此,关于赋予机器学习模型具有解释性的重要性有一个普遍的共识。可解释的人工智能(XAI)技术可以用来验证和认证模型输出,并以可信赖,问责制,透明度和公平等理想的概念来增强它们。本指南旨在成为任何具有计算机科学背景的受众的首选手册,旨在获得对机器学习模型的直观见解,并伴随着笔直,快速和直观的解释。本文旨在通过在其特定的日常型号,数据集和用例中应用XAI技术来填补缺乏引人注目的XAI指南。图1充当读者的流程图/地图,应帮助他根据自己的数据类型找到理想的使用方法。在每章中,读者将找到所提出的方法的描述,以及在生物医学应用程序和Python笔记本上使用的示例。它可以轻松修改以应用于特定应用程序。
translated by 谷歌翻译