避免过度拟合是机器学习的核心挑战,但是许多大型神经网络很容易实现零训练的损失。这种令人困惑的矛盾需要对过度拟合的新方法进行新的方法。在这里,我们通过剩余信息量化过度拟合,该信息定义为在训练数据中编码噪声的拟合模型中的位。信息有效的学习算法最大程度地减少了剩余信息,同时最大程度地提高了相关位,这可以预测未知的生成模型。我们解决了此优化,以获得线性回归问题的最佳算法的信息内容,并将其与随机脊回归的信息进行比较。我们的结果表明,残留信息和相关信息之间的基本权衡,并表征了随机回归相对于最佳算法的相对信息效率。最后,使用随机矩阵理论的结果,我们揭示了在高维度和多重下降现象的高维和信息理论类似物中学习线性图的信息复杂性。
translated by 谷歌翻译
强大的机器学习模型的开发中的一个重要障碍是协变量的转变,当训练和测试集的输入分布时发生的分配换档形式在条件标签分布保持不变时发生。尽管现实世界应用的协变量转变普遍存在,但在现代机器学习背景下的理论理解仍然缺乏。在这项工作中,我们检查协变量的随机特征回归的精确高尺度渐近性,并在该设置中提出了限制测试误差,偏差和方差的精确表征。我们的结果激发了一种自然部分秩序,通过协变速转移,提供足够的条件来确定何时何时损害(甚至有助于)测试性能。我们发现,过度分辨率模型表现出增强的协会转变的鲁棒性,为这种有趣现象提供了第一个理论解释之一。此外,我们的分析揭示了分销和分发外概率性能之间的精确线性关系,为这一令人惊讶的近期实证观察提供了解释。
translated by 谷歌翻译
在本手稿中,我们考虑在高斯设计下的内核Ridge回归(KRR)。根据特征的幂律衰减,在各种作品中报告了KRR过度概括误差衰减的指数。然而,这些衰变是为虚拟化的不同设置提供,即在无噪声案例中,在恒定正则化和嘈杂的最佳正则化案例中。中介设置已留下了大幅上未公布的。在这项工作中,我们统一并扩展了这一工作,提供了所有制度的表征和可以在噪声和正则化相互作用方面观察到的超出误差衰减率。特别是,我们展示了随着样本复杂性增加了无噪音指数与其嘈杂值之间的嘈杂设置中的过渡。最后,我们说明了如何在真实数据集上观察到该交叉。
translated by 谷歌翻译
这项教程调查概述了统计学习理论中最新的非征血性进步与控制和系统识别相关。尽管在所有控制领域都取得了重大进展,但在线性系统的识别和学习线性二次调节器时,该理论是最发达的,这是本手稿的重点。从理论的角度来看,这些进步的大部分劳动都在适应现代高维统计和学习理论的工具。虽然与控制对机器学习的工具感兴趣的理论家高度相关,但基础材料并不总是容易访问。为了解决这个问题,我们提供了相关材料的独立介绍,概述了基于最新结果的所有关键思想和技术机械。我们还提出了许多开放问题和未来的方向。
translated by 谷歌翻译
与经典线性模型不同,非线性生成模型在统计学习的文献中被稀疏地解决。这项工作旨在引起对这些模型及其保密潜力的关注。为此,我们调用了复制方法,以在反相反的问题中得出渐近归一化的横熵,其生成模型由具有通用协方差函数的高斯随机场描述。我们的推导进一步证明了贝叶斯估计量的渐近统计解耦,并为给定的非线性模型指定了解耦设置。复制解决方案描述了严格的非线性模型建立了全有或全无的相变:存在一个关键负载,最佳贝叶斯推断从完美的学习变为不相关的学习。基于这一发现,我们设计了一种新的安全编码方案,该方案可实现窃听通道的保密能力。这个有趣的结果意味着,严格的非线性生成模型是完美的,没有任何安全编码。我们通过分析说明性模型的完全安全和可靠的推论来证明后一种陈述是合理的。
translated by 谷歌翻译
了解特征学习如何影响概括是现代深度学习理论的最重要目标之一。在这里,我们研究了学习表示的能力如何影响一类简单模型的概括性能:深贝叶斯线性神经网络接受了非结构化高斯数据的训练。通过将深层随机特征模型与所有训练所有层的深网进行比较,我们将提供详细的表征宽度,深度,数据密度和先验不匹配之间的相互作用。我们表明,在存在标签噪声的情况下,这两种模型都显示出样本的双重变化行为。如果有狭窄的瓶颈层,那么随机特征模型还可以显示模型的双重变化,而深网不显示这些分歧。随机特征模型可以具有特定的宽度,这些宽度对于在给定的数据密度下是最佳的概括,同时使神经网络尽可能宽或狭窄始终是最佳的。此外,我们表明,对内核限制学习曲线的前阶校正无法区分所有培训所有层的随机特征模型和深层网络。综上所述,我们的发现开始阐明建筑细节如何影响这种简单的深层回归模型类别的概括性能。
translated by 谷歌翻译
我们研究了过度参数化模型中插值的必要性,也就是说,在实现机器学习问题的最佳预测风险时,需要(几乎)插值培训数据。特别是,我们考虑简单的过度参数性线性回归$ y = x \ theta + w $带随机设计$ x \ in \ mathbb {r}^{n \ times d} $在比例的渐近学$ d/n \ to \ gamma下\ in(1,\ infty)$。我们精确地表征了预测(测试)错误在此设置中必须使用训练错误缩放。这种表征的暗示是,作为标签噪声差异$ \ sigma^2 \至0 $,任何至少造成$ \ mathsf {c} \ sigma^4 $训练错误的估计器,对于某些常数$ \ mathsf {c}$必然是次优的,并且在训练错误中至少会遭受过多预测误差的增长。因此,最佳性能要求将培训数据拟合的精度要高于问题的固有噪声。
translated by 谷歌翻译
本文探讨了可变参数化模型系列的线性回归的概括性损失,包括在参数化和过度参数化的模型中。我们表明,泛化曲线可以具有任意数量的峰值,而且可以明确地控制这些峰的位置。我们的结果突出了经典U形泛化曲线和最近观察到的双下降曲线的事实不是模型系列的内在特性。相反,它们的出现是由于数据的性质与学习算法的感应偏差之间的相互作用。
translated by 谷歌翻译
教师 - 学生模型提供了一个框架,其中可以以封闭形式描述高维监督学习的典型情况。高斯I.I.D的假设然而,可以认为典型教师 - 学生模型的输入数据可以被认为过于限制,以捕获现实数据集的行为。在本文中,我们介绍了教师和学生可以在不同的空格上行动的模型的高斯协变态概括,以固定的,而是通用的特征映射。虽然仍处于封闭形式的仍然可解决,但这种概括能够捕获广泛的现实数据集的学习曲线,从而兑现师生框架的潜力。我们的贡献是两倍:首先,我们证明了渐近培训损失和泛化误差的严格公式。其次,我们呈现了许多情况,其中模型的学习曲线捕获了使用内​​核回归和分类学习的现实数据集之一,其中盒出开箱特征映射,例如随机投影或散射变换,或者与散射变换预先学习的 - 例如通过培训多层神经网络学到的特征。我们讨论了框架的权力和局限性。
translated by 谷歌翻译
从数据中学习的方法取决于各种类型的调整参数,例如惩罚强度或步长大小。由于性能可以在很大程度上取决于这些参数,因此重要的是要比较估算器的类别 - 考虑规定的有限调谐参数集,而不是特别调谐的方法。在这项工作中,我们通过同类中最佳方法的相对性能研究方法类。我们考虑了线性回归的中心问题,即随机的各向同性地面真理,并研究了两种基本方法的估计性能,即梯度下降和脊回归。我们公布以下现象。 (1)对于一般设计,当经验数据协方差矩阵衰减的特征值缓慢,作为指数较不小于统一的功率定律时,恒定的梯度下降优于山脊回归。相反,如果特征值迅速衰减,则作为指数大于统一或指数的权力定律,我们表明山脊回归优于梯度下降。 (2)对于正交设计,我们计算了确切的最小值最佳估计器类别(达到最低最大最大最佳),这表明它等同于具有衰减学习率的梯度下降。我们发现山脊回归和梯度下降的次数均具有恒定的步长。我们的结果表明,统计性能可以在很大程度上取决于调整参数。特别是,虽然最佳调谐脊回归是我们设置中的最佳估计器,但当仅在有限的许多正则化参数上调整两种方法时,它可以用任意/无界数量的梯度下降来表现优于梯度下降。
translated by 谷歌翻译
建立深度学习的理论基础的一个关键挑战是神经网络的复杂优化动态,由大量网络参数之间的高维相互作用产生。这种非琐碎的动态导致有趣的行为,例如概括误差的“双重下降”的现象。这种现象的越常见的方面对应于模型 - 明智的双下降,其中测试误差具有增加模型复杂性的第二下降,超出经典的U形误差曲线。在这项工作中,我们研究了研究误差在训练时间增加时进行了测试误差的较低学习的巨头双重下降的起源。通过利用统计物理学的工具,我们研究了展示了与深神经网络中的EPOCH-WISE Double Countcle的线性师生设置。在此设置中,我们导出了封闭式的分析表达式,用于培训泛化误差的演变。我们发现双重血统可以归因于不同尺度的不同特征:作为快速学习功能过度装备,较慢的学习功能开始适合,导致测试错误的第二个下降。我们通过数字实验验证了我们的研究结果,其中我们的理论准确预测了实证发现,并与深神经网络中的观察结果保持一致。
translated by 谷歌翻译
Graph neural networks (GNN) have become the default machine learning model for relational datasets, including protein interaction networks, biological neural networks, and scientific collaboration graphs. We use tools from statistical physics and random matrix theory to precisely characterize generalization in simple graph convolution networks on the contextual stochastic block model. The derived curves are phenomenologically rich: they explain the distinction between learning on homophilic and heterophilic graphs and they predict double descent whose existence in GNNs has been questioned by recent work. Our results are the first to accurately explain the behavior not only of a stylized graph learning model but also of complex GNNs on messy real-world datasets. To wit, we use our analytic insights about homophily and heterophily to improve performance of state-of-the-art graph neural networks on several heterophilic benchmarks by a simple addition of negative self-loop filters.
translated by 谷歌翻译
我们在对数损失下引入条件密度估计的过程,我们调用SMP(样本Minmax预测器)。该估算器最大限度地减少了统计学习的新一般过度风险。在标准示例中,此绑定量表为$ d / n $,$ d $ d $模型维度和$ n $ sample大小,并在模型拼写条目下批判性仍然有效。作为一个不当(超出型号)的程序,SMP在模型内估算器(如最大似然估计)的内部估算器上,其风险过高的风险降低。相比,与顺序问题的方法相比,我们的界限删除了SubOltimal $ \ log n $因子,可以处理无限的类。对于高斯线性模型,SMP的预测和风险受到协变量的杠杆分数,几乎匹配了在没有条件的线性模型的噪声方差或近似误差的条件下匹配的最佳风险。对于Logistic回归,SMP提供了一种非贝叶斯方法来校准依赖于虚拟样本的概率预测,并且可以通过解决两个逻辑回归来计算。它达到了$ O的非渐近风险((d + b ^ 2r ^ 2)/ n)$,其中$ r $绑定了特征的规范和比较参数的$ B $。相比之下,在模型内估计器内没有比$ \ min达到更好的速率({b r} / {\ sqrt {n}},{d e ^ {br} / {n})$。这为贝叶斯方法提供了更实用的替代方法,这需要近似的后部采样,从而部分地解决了Foster等人提出的问题。 (2018)。
translated by 谷歌翻译
Deep Neural Networks (DNNs) are analyzed via the theoretical framework of the information bottleneck (IB) principle. We first show that any DNN can be quantified by the mutual information between the layers and the input and output variables. Using this representation we can calculate the optimal information theoretic limits of the DNN and obtain finite sample generalization bounds. The advantage of getting closer to the theoretical limit is quantifiable both by the generalization bound and by the network's simplicity. We argue that both the optimal architecture, number of layers and features/connections at each layer, are related to the bifurcation points of the information bottleneck tradeoff, namely, relevant compression of the input layer with respect to the output layer. The hierarchical representations at the layered network naturally correspond to the structural phase transitions along the information curve. We believe that this new insight can lead to new optimality bounds and deep learning algorithms.
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译
我们认为越来越复杂的矩阵去噪和贝叶斯最佳设置中的文章学习模型,在挑战性的政权中,在矩阵推断出与系统尺寸线性的排名增加。这与大多数现有的文献相比,与低秩(即常数级别)制度相关的文献相反。我们首先考虑一类旋转不变的矩阵去噪,使用来自随机矩阵理论的标准技术来计算的互动信息和最小均方误差。接下来,我们分析了字典学习的更具挑战性模式。为此,我们将复制方法与随机矩阵理论一起介绍了复制品方法的新组合,共同矩阵理论,Coined光谱副本方法。它允许我们猜测隐藏表示与字典学习问题的嘈杂数据之间的相互信息的变分形式,以及定量最佳重建误差的重叠。所提出的方法从$ \ theta(n ^ 2)$(矩阵条目)到$ \ theta(n)$(特征值或奇异值)减少自由度的数量,并产生的互信息的库仑气体表示让人想起物理学中的矩阵模型。主要成分是使用Harishchandra-Itzykson-Zuber球形积分,结合新的复制对称解耦Ansatz,在特定重叠矩阵的特征值(或奇异值)的概率分布的水平上。
translated by 谷歌翻译
In many modern applications of deep learning the neural network has many more parameters than the data points used for its training. Motivated by those practices, a large body of recent theoretical research has been devoted to studying overparameterized models. One of the central phenomena in this regime is the ability of the model to interpolate noisy data, but still have test error lower than the amount of noise in that data. arXiv:1906.11300 characterized for which covariance structure of the data such a phenomenon can happen in linear regression if one considers the interpolating solution with minimum $\ell_2$-norm and the data has independent components: they gave a sharp bound on the variance term and showed that it can be small if and only if the data covariance has high effective rank in a subspace of small co-dimension. We strengthen and complete their results by eliminating the independence assumption and providing sharp bounds for the bias term. Thus, our results apply in a much more general setting than those of arXiv:1906.11300, e.g., kernel regression, and not only characterize how the noise is damped but also which part of the true signal is learned. Moreover, we extend the result to the setting of ridge regression, which allows us to explain another interesting phenomenon: we give general sufficient conditions under which the optimal regularization is negative.
translated by 谷歌翻译
随机梯度下降(SGD)是现代机器学习的支柱,是各种问题的首选优化算法。尽管SGD的经验成功通常归因于其计算效率和有利的概括行为,但两者都没有充分理解和解散它们仍然是一个开放的问题。即使在简单的凸二次问题的设置中,最坏情况分析也给SGD的渐近收敛率提供了不比全批梯度下降(GD)更好的,而SGD的所谓隐式正则作用缺乏精确的解释。在这项工作中,我们研究了高维凸四边形上多通sgd的动力学,并建立了与随机微分方程的渐近等效性,我们称之为同质化的随机梯度下降(HSGD),我们的解决方案我们以我们的解决方案的方式明确表征Volterra积分方程。这些结果为学习和风险轨迹提供精确的公式,该公式揭示了隐性条件的机制,该机制解释了SGD相对于GD的效率。我们还证明,来自SGD的噪声会对泛化性能产生负面影响,排除在这种情况下任何类型的隐式正则化的可能性。最后,我们展示了如何适应HSGD形式主义以包括流媒体SGD,这使我们能够针对相对于流SGD(Bootstrap风险)的多通SGD的多余风险产生确切的预测。
translated by 谷歌翻译
许多最近的作品表明,过度分辨率隐含地降低了MIN-NORM Interpolator和Max-Maxifiers的方差。这些调查结果表明,RIDGE正则化在高维度下具有消失的益处。我们通过表明,即使在没有噪声的情况下,避免通过脊正则化的插值可以显着提高泛化。我们证明了这种现象,用于线性回归和分类的强大风险,因此提供了强大的过度装备的第一个理论结果。
translated by 谷歌翻译
The phenomenon of benign overfitting is one of the key mysteries uncovered by deep learning methodology: deep neural networks seem to predict well, even with a perfect fit to noisy training data. Motivated by this phenomenon, we consider when a perfect fit to training data in linear regression is compatible with accurate prediction. We give a characterization of linear regression problems for which the minimum norm interpolating prediction rule has near-optimal prediction accuracy. The characterization is in terms of two notions of the effective rank of the data covariance. It shows that overparameterization is essential for benign overfitting in this setting: the number of directions in parameter space that are unimportant for prediction must significantly exceed the sample size. By studying examples of data covariance properties that this characterization shows are required for benign overfitting, we find an important role for finite-dimensional data: the accuracy of the minimum norm interpolating prediction rule approaches the best possible accuracy for a much narrower range of properties of the data distribution when the data lies in an infinite dimensional space versus when the data lies in a finite dimensional space whose dimension grows faster than the sample size.
translated by 谷歌翻译