多保真建模和学习在与物理模拟相关的应用中很重要。它可以利用低保真性和高保真示例进行培训,以降低数据生成成本,同时仍然达到良好的性能。尽管现有方法仅模型有限,离散的保真度,但实际上,忠诚度的选择通常是连续且无限的,这可以对应于连续的网格间距或有限元元素长度。在本文中,我们提出了无限的保真度核心化(IFC)。鉴于数据,我们的方法可以在连续无限的保真度中提取和利用丰富的信息来增强预测准确性。我们的模型可以插值和/或推断出对新型保真度的预测,甚至可以高于训练数据的保​​真度。具体而言,我们引入了一个低维的潜在输出作为保真度和输入的连续函数,并具有带有基矩阵的多个IT以预测高维解决方案输出。我们将潜在输出建模为神经普通微分方程(ODE),以捕获内部的复杂关系并在整个连续保真度中整合信息。然后,我们使用高斯工艺或其他颂歌来估计忠诚度变化的碱基。为了有效的推断,我们将碱基重组为张量,并使用张量 - 高斯变异后部为大规模输出开发可扩展的推理算法。我们在计算物理学的几个基准任务中展示了我们的方法的优势。
translated by 谷歌翻译
物理建模对于许多现代科学和工程应用至关重要。从数据科学或机器学习的角度来看,更多的域 - 不可吻合,数据驱动的模型是普遍的,物理知识 - 通常表示为微分方程 - 很有价值,因为它与数据是互补的,并且可能有可能帮助克服问题例如数据稀疏性,噪音和不准确性。在这项工作中,我们提出了一个简单但功能强大且通用的框架 - 自动构建物理学,可以将各种微分方程集成到高斯流程(GPS)中,以增强预测准确性和不确定性量化。这些方程可以是线性或非线性,空间,时间或时空,与未知的源术语完全或不完整,等等。基于内核分化,我们在示例目标函数,方程相关的衍生物和潜在源函数之前构建了GP,这些函数全部来自多元高斯分布。采样值被馈送到两个可能性:一个以适合观测值,另一个符合方程式。我们使用美白方法来逃避采样函数值和内核参数之间的强依赖性,并开发出一种随机变分学习算法。在模拟和几个现实世界应用中,即使使用粗糙的,不完整的方程式,自动元素都显示出对香草GPS的改进。
translated by 谷歌翻译
基于部分微分方程的物理模拟通常会生成空间场结果,这些结果可用于计算系统设计和优化系统的特定属性。由于模拟的密集计算负担,替代模型将低维输入映射到空间场通常是基于相对较小的数据集构建的。为了解决预测整个空间场的挑战,流行的核心区域线性线性模型(LMC)可以在高维空间场输出中解散复杂的相关性,并提供准确的预测。但是,如果通过基本函数与潜在过程的线性组合无法很好地近似空间场,则LMC会失败。在本文中,我们通过引入可演化的神经网络来线性化高度复杂和非线性空间场,以便LMC可以轻松地将非线性问题概括为非线性问题,同时保留了放大学性和可伸缩性。几个现实世界的应用程序表明,E-LMC可以有效利用空间相关性,显示出比原始LMC的最大提高约40%,并且表现优于其他最先进的空间场模型。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
高维时空动力学通常可以在低维子空间中编码。用于建模,表征,设计和控制此类大规模系统的工程应用通常依赖于降低尺寸,以实时计算解决方案。降低维度的常见范例包括线性方法,例如奇异值分解(SVD)和非线性方法,例如卷积自动编码器(CAE)的变体。但是,这些编码技术缺乏有效地表示与时空数据相关的复杂性的能力,后者通常需要可变的几何形状,非均匀的网格分辨率,自适应网格化和/或参数依赖性。为了解决这些实用的工程挑战,我们提出了一个称为神经隐式流(NIF)的一般框架,该框架可以实现大型,参数,时空数据的网格不稳定,低级别表示。 NIF由两个修改的多层感知器(MLP)组成:(i)shapenet,它分离并代表空间复杂性,以及(ii)参数,该参数解释了任何其他输入复杂性,包括参数依赖关系,时间和传感器测量值。我们演示了NIF用于参数替代建模的实用性,从而实现了复杂时空动力学的可解释表示和压缩,有效的多空间质量任务以及改善了稀疏重建的通用性能。
translated by 谷歌翻译
物理启发的潜力模型为纯粹的数据驱动工具提供可解释的替代品,用于动态系统的推断。它们携带微分方程的结构和高斯过程的灵活性,产生可解释的参数和动态施加的潜在功能。然而,与这些模型相关联的现有推理技术依赖于在分析形式中很少可用的后内核术语的精确计算。大多数与从业者相关的应用程序,例如Hill方程或扩散方程,因此是棘手的。在本文中,我们通过提出对一般类非线性和抛物面部分微分方程潜力模型的变分解决方案来克服这些计算问题。此外,我们表明,神经操作员方法可以将我们的模型扩展到数千个实例,实现快速,分布式计算。我们通过在几个任务中实现竞争性能,展示了我们框架的效力和灵活性,其中核的核心不同程度的遗传性。
translated by 谷歌翻译
操作员的学习框架由于其能够在两个无限尺寸功能空间之间学习非线性图和神经网络的利用能力,因此最近成为应用机器学习领域中最相关的领域之一。尽管这些框架在建模复杂现象方面具有极大的能力,但它们需要大量数据才能成功培训,这些数据通常是不可用或太昂贵的。但是,可以通过使用多忠诚度学习来缓解此问题,在这种学习中,通过使用大量廉价的低保真数据以及少量昂贵的高保真数据来训练模型。为此,我们开发了一个基于小波神经操作员的新框架,该框架能够从多保真数据集中学习。通过解决不同的问题,需要在两个忠诚度之间进行有效的相关性学习来证明开发模型的出色学习能力。此外,我们还评估了开发框架在不确定性定量中的应用。从这项工作中获得的结果说明了拟议框架的出色表现。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
机器学习正迅速成为科学计算的核心技术,并有许多机会推进计算流体动力学领域。从这个角度来看,我们强调了一些潜在影响最高的领域,包括加速直接数值模拟,以改善湍流闭合建模,并开发增强的减少订单模型。我们还讨论了机器学习的新兴领域,这对于计算流体动力学以及应考虑的一些潜在局限性是有希望的。
translated by 谷歌翻译
Partial differential equations (PDEs) are widely used for description of physical and engineering phenomena. Some key parameters involved in PDEs, which represents certain physical properties with important scientific interpretations, are difficult or even impossible to be measured directly. Estimation of these parameters from noisy and sparse experimental data of related physical quantities is an important task. Many methods for PDE parameter inference involve a large number of evaluations of numerical solution of PDE through algorithms such as finite element method, which can be time-consuming especially for nonlinear PDEs. In this paper, we propose a novel method for estimating unknown parameters in PDEs, called PDE-Informed Gaussian Process Inference (PIGPI). Through modeling the PDE solution as a Gaussian process (GP), we derive the manifold constraints induced by the (linear) PDE structure such that under the constraints, the GP satisfies the PDE. For nonlinear PDEs, we propose an augmentation method that transfers the nonlinear PDE into an equivalent PDE system linear in all derivatives that our PIGPI can handle. PIGPI can be applied to multi-dimensional PDE systems and PDE systems with unobserved components. The method completely bypasses the numerical solver for PDE, thus achieving drastic savings in computation time, especially for nonlinear PDEs. Moreover, the PIGPI method can give the uncertainty quantification for both the unknown parameters and the PDE solution. The proposed method is demonstrated by several application examples from different areas.
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
Partial differential equations (PDEs) are important tools to model physical systems, and including them into machine learning models is an important way of incorporating physical knowledge. Given any system of linear PDEs with constant coefficients, we propose a family of Gaussian process (GP) priors, which we call EPGP, such that all realizations are exact solutions of this system. We apply the Ehrenpreis-Palamodov fundamental principle, which works like a non-linear Fourier transform, to construct GP kernels mirroring standard spectral methods for GPs. Our approach can infer probable solutions of linear PDE systems from any data such as noisy measurements, or initial and boundary conditions. Constructing EPGP-priors is algorithmic, generally applicable, and comes with a sparse version (S-EPGP) that learns the relevant spectral frequencies and works better for big data sets. We demonstrate our approach on three families of systems of PDE, the heat equation, wave equation, and Maxwell's equations, where we improve upon the state of the art in computation time and precision, in some experiments by several orders of magnitude.
translated by 谷歌翻译
张量分解是一个基本框架,用于分析可以由多维阵列表示的数据。实际上,张量数据通常伴随时间信息,即产生输入值的时间点。该信息意味着丰富的,复杂的时间变化模式。但是,当前方法始终假设每个张量模式下实体的因子表示是静态的,并且从不考虑它们的时间演变。为了填补这一空白,我们建议用于动态张量分解(NONFAT)的非参数因子轨迹学习。我们将高斯工艺(GP)先验放置在频域中,并通过高斯 - 局部正交进行逆傅立叶变换以采样轨迹函数。通过这种方式,我们可以克服数据稀疏性并在长期范围内获得强大的轨迹估计值。给定特定时间点的轨迹值,我们使用二级GP来采样入口值并捕获实体之间的时间关系。为了高效且可扩展的推断,我们利用模型中的基质高斯结构,引入基质高斯后部,并开发嵌套的稀疏变分学习算法。我们已经在几个现实世界应用中展示了我们的方法的优势。
translated by 谷歌翻译
我们开发了一种基于嘈杂观测值的时空动力学模型的完全贝叶斯学习和校准的方法。通过将观察到的数据与机械系统的模拟计算机实验融合信息来实现校准。联合融合使用高斯和非高斯州空间方法以及高斯工艺回归。假设动态系统受到有限的输入收集的控制,高斯过程回归通过许多训练运行来了解这些参数的效果,从而推动了时空状态空间组件的随机创新。这可以在空间和时间上对动态进行有效的建模。通过减少的高斯过程和共轭模型规范,我们的方法适用于大规模校准和反问题。我们的方法是一般,可扩展的,并且能够学习具有潜在模型错误指定的各种动力系统。我们通过解决普通和部分非线性微分方程的分析中产生的反问题来证明这种灵活性,此外,还可以在网络上生成时空动力学的黑盒计算机模型。
translated by 谷歌翻译
风电场设计主要取决于风力涡轮机唤醒流向大气风条件的可变性,以及唤醒之间的相互作用。使用高保真度捕获唤醒流场的物理学模型是计算风电场的布局优化的计算非常昂贵,因此数据驱动的减少的订单模型可以代表模拟风电场的有效替代方案。在这项工作中,我们使用现实世界的光检测和测量(LIDAR)测量的风力涡轮机唤醒,用机器学习构建预测代理模型。具体而言,我们首先展示使用深度自动控制器来找到低维\ emph {潜在}空间,其给出了唤醒激光雷达测量的计算易逼近的近似。然后,我们学习使用深神经网络的参数空间和(潜在空间)唤醒流场之间的映射。此外,我们还展示了使用概率机器学习技术,即高斯过程建模,除了数据中的认知和炼拉内不确定性之外,学习参数空间潜空间映射。最后,为了应对培训大型数据集,我们展示了使用变分高斯过程模型,为大型数据集提供了传统的高斯工艺模型的传统高斯工艺模型。此外,我们介绍了主动学习以自适应地构建和改进传统的高斯过程模型预测能力。总的来说,我们发现我们的方法提供了风力涡轮机唤醒流场的准确近似,其可以以比具有基于高保真物理的模拟产生的级别更便宜的成本来查询。
translated by 谷歌翻译
多任务高斯流程(MTGP)是一种众所周知的非参数贝叶斯模型,用于通过跨任务传输知识来有效地学习相关任务。但是当前的MTGP通常仅限于在同一输入域中定义的多任务场景,没有留出空间来解决异质案例,即输入域的特征在任务上有所不同。为此,本文提出了一个新型的异质随机变化线性模型(\ texttt {hsvlmc})模型,用于同时学习具有不同输入域的任务。特别是,我们通过贝叶斯校准开发了随机变化框架,该框架(i)考虑了域映射提高的尺寸降低的影响,以实现有效的输入对准; (ii)采用残差建模策略来利用先前域映射带来的电感偏差来获得更好的模型推断。最后,对现有LMC模型的优势在各种异质的多任务案例和实用的多保真蒸汽轮机排气问题上进行了广泛的验证。
translated by 谷歌翻译
我们制定了一类由物理驱动的深层变量模型(PDDLVM),以学习参数偏微分方程(PDES)的参数到解决方案(正向)和解决方案到参数(逆)图。我们的公式利用有限元方法(FEM),深神经网络和概率建模来组装一个深层概率框架,在该框架中,向前和逆图通过连贯的不确定性量化近似。我们的概率模型明确合并了基于参数PDE的密度和可训练的解决方案到参数网络,而引入的摊销变异家庭假定参数到解决方案网络,所有这些网络均经过联合培训。此外,所提出的方法不需要任何昂贵的PDE解决方案,并且仅在训练时间内对物理信息进行了信息,该方法允许PDE的实时仿真和培训后的逆问题解决方案的产生,绕开了对FEM操作的需求,以相当的准确性,以便于FEM解决方案。提出的框架进一步允许无缝集成观察到的数据,以解决反问题和构建生成模型。我们证明了方法对非线性泊松问题,具有复杂3D几何形状的弹性壳以及整合通用物理信息信息的神经网络(PINN)体系结构的有效性。与传统的FEM求解器相比,训练后,我们最多达到了三个数量级的速度,同时输出连贯的不确定性估计值。
translated by 谷歌翻译
物理世界中的液体的难以解释需要准确地模拟其许多科学和工程应用的动态。传统上,建立得很好但资源密集的CFD溶解器提供了这种模拟。近年来已经看到了深入学习的替代模型,取代了这些求解器来缓解模拟过程。构建数据驱动代理的一些方法模拟了求解器迭代过程。他们推断出前一个液体的下一个状态。其他人直接从时间输入中推断出来。方法在其对空间信息的管理方面也有所不同。图形神经网络(GNN)可以解决CFD仿真中常用的不规则网格的特异性。在本文中,我们展示了我们正在进行的工作来设计一种用于不规则网格的新型直接时间GNN架构。它包括随着样条卷绕卷积连接的尺寸的连续。我们在von k {\'a} rm {\'a} n的vortex街基准测试中测试我们的架构。它实现了小的泛化误差,同时减轻了轨迹的误差累积。
translated by 谷歌翻译
深度学习替代模型已显示出在解决部分微分方程(PDE)方面的希望。其中,傅立叶神经操作员(FNO)达到了良好的准确性,并且与数值求解器(例如流体流量)上的数值求解器相比要快得多。但是,FNO使用快速傅立叶变换(FFT),该变换仅限于具有均匀网格的矩形域。在这项工作中,我们提出了一个新框架,即Geo-Fno,以解决任意几何形状的PDE。 Geo-FNO学会将可能不规则的输入(物理)结构域变形为具有均匀网格的潜在空间。具有FFT的FNO模型应用于潜在空间。所得的GEO-FNO模型既具有FFT的计算效率,也具有处理任意几何形状的灵活性。我们的Geo-FNO在其输入格式,,即点云,网格和设计参数方面也很灵活。我们考虑了各种PDE,例如弹性,可塑性,Euler和Navier-Stokes方程,以及正向建模和逆设计问题。与标准数值求解器相比,与标准数值求解器相比,Geo-fno的价格比标准数值求解器快两倍,与在现有基于ML的PDE求解器(如标准FNO)上进行直接插值相比,Geo-fno更准确。
translated by 谷歌翻译