我们开发了一种基于嘈杂观测值的时空动力学模型的完全贝叶斯学习和校准的方法。通过将观察到的数据与机械系统的模拟计算机实验融合信息来实现校准。联合融合使用高斯和非高斯州空间方法以及高斯工艺回归。假设动态系统受到有限的输入收集的控制,高斯过程回归通过许多训练运行来了解这些参数的效果,从而推动了时空状态空间组件的随机创新。这可以在空间和时间上对动态进行有效的建模。通过减少的高斯过程和共轭模型规范,我们的方法适用于大规模校准和反问题。我们的方法是一般,可扩展的,并且能够学习具有潜在模型错误指定的各种动力系统。我们通过解决普通和部分非线性微分方程的分析中产生的反问题来证明这种灵活性,此外,还可以在网络上生成时空动力学的黑盒计算机模型。
translated by 谷歌翻译
Partial differential equations (PDEs) are widely used for description of physical and engineering phenomena. Some key parameters involved in PDEs, which represents certain physical properties with important scientific interpretations, are difficult or even impossible to be measured directly. Estimation of these parameters from noisy and sparse experimental data of related physical quantities is an important task. Many methods for PDE parameter inference involve a large number of evaluations of numerical solution of PDE through algorithms such as finite element method, which can be time-consuming especially for nonlinear PDEs. In this paper, we propose a novel method for estimating unknown parameters in PDEs, called PDE-Informed Gaussian Process Inference (PIGPI). Through modeling the PDE solution as a Gaussian process (GP), we derive the manifold constraints induced by the (linear) PDE structure such that under the constraints, the GP satisfies the PDE. For nonlinear PDEs, we propose an augmentation method that transfers the nonlinear PDE into an equivalent PDE system linear in all derivatives that our PIGPI can handle. PIGPI can be applied to multi-dimensional PDE systems and PDE systems with unobserved components. The method completely bypasses the numerical solver for PDE, thus achieving drastic savings in computation time, especially for nonlinear PDEs. Moreover, the PIGPI method can give the uncertainty quantification for both the unknown parameters and the PDE solution. The proposed method is demonstrated by several application examples from different areas.
translated by 谷歌翻译
具有微分方程的机械模型是机器学习科学应用的关键组成部分。这种模型中的推论通常在计算上是要求的,因为它涉及重复求解微分方程。这里的主要问题是数值求解器很难与标准推理技术结合使用。概率数字中的最新工作已经开发了一类新的用于普通微分方程(ODE)的求解器,该方程式直接用贝叶斯过滤词来表达解决方案过程。我们在这里表明,这允许将此类方法与概念和数值易于宽容地结合在一起,并在ODE本身中与潜在力模型结合在一起。然后,可以在潜在力和ode溶液上执行近似贝叶斯推断,并在一个线性复杂度传递中进行扩展的卡尔曼滤波器 /更平滑的线性复杂度,也就是说,以计算单个ODE解决方案为代价。我们通过培训表明了算法的表达和性能,以及其他训练中的非参数SIRD模型。
translated by 谷歌翻译
线性系统发生在整个工程和科学中,最著名的是差分方程。在许多情况下,系统的强迫函数尚不清楚,兴趣在于使用对系统的嘈杂观察来推断强迫以及其他未知参数。在微分方程中,强迫函数是自变量(通常是时间和空间)的未知函数,可以建模为高斯过程(GP)。在本文中,我们展示了如何使用GP内核的截断基础扩展,如何使用线性系统的伴随有效地推断成GP的功能。我们展示了如何实现截短的GP的确切共轭贝叶斯推断,在许多情况下,计算的计算大大低于使用MCMC方法所需的计算。我们证明了普通和部分微分方程系统的方法,并表明基础扩展方法与数量适中的基础向量相近。最后,我们展示了如何使用贝叶斯优化来推断非线性模型参数(例如内核长度尺度)的点估计值。
translated by 谷歌翻译
本论文主要涉及解决深层(时间)高斯过程(DGP)回归问题的状态空间方法。更具体地,我们代表DGP作为分层组合的随机微分方程(SDES),并且我们通过使用状态空间过滤和平滑方法来解决DGP回归问题。由此产生的状态空间DGP(SS-DGP)模型生成丰富的电视等级,与建模许多不规则信号/功能兼容。此外,由于他们的马尔可道结构,通过使用贝叶斯滤波和平滑方法可以有效地解决SS-DGPS回归问题。本论文的第二次贡献是我们通过使用泰勒力矩膨胀(TME)方法来解决连续离散高斯滤波和平滑问题。这诱导了一类滤波器和SmooThers,其可以渐近地精确地预测随机微分方程(SDES)解决方案的平均值和协方差。此外,TME方法和TME过滤器和SmoOthers兼容模拟SS-DGP并解决其回归问题。最后,本文具有多种状态 - 空间(深)GPS的应用。这些应用主要包括(i)来自部分观察到的轨迹的SDES的未知漂移功能和信号的光谱 - 时间特征估计。
translated by 谷歌翻译
随机微分方程的系统定义了一系列随机波动率模型。尽管这些模型在金融和统计气候学等领域中取得了广泛的成功,但它们通常缺乏在历史数据上条件产生真正的后验分布的能力。为了解决这一基本限制,我们展示了如何将一类随机波动率模型重新塑造为具有专门协方差函数的层次高斯工艺(GP)模型。该GP模型保留了随机波动率模型的电感偏差,同时提供了GP推断给出的后验预测分布。在此框架内,我们从研究良好的域中汲取灵感,以引入新的型号,即Volt和Magpie,这些模型在库存和风速预测中的表现明显超过了基线,并且自然扩展到多任务设置。
translated by 谷歌翻译
多维时空数据的概率建模对于许多现实世界应用至关重要。然而,现实世界时空数据通常表现出非平稳性的复杂依赖性,即相关结构随位置/时间而变化,并且在空间和时间之间存在不可分割的依赖性,即依赖关系。开发有效和计算有效的统计模型,以适应包含远程和短期变化的非平稳/不可分割的过程,成为一项艰巨的任务,尤其是对于具有各种腐败/缺失结构的大规模数据集。在本文中,我们提出了一个新的统计框架 - 贝叶斯互补内核学习(BCKL),以实现多维时空数据的可扩展概率建模。为了有效地描述复杂的依赖性,BCKL与短距离时空高斯过程(GP)相结合的内核低级分解(GP),其中两个组件相互补充。具体而言,我们使用多线性低级分组组件来捕获数据中的全局/远程相关性,并基于紧凑的核心函数引入加法短尺度GP,以表征其余的局部变异性。我们为模型推断开发了有效的马尔可夫链蒙特卡洛(MCMC)算法,并在合成和现实世界时空数据集上评估了所提出的BCKL框架。我们的结果证实了BCKL在提供准确的后均值和高质量不确定性估计方面的出色表现。
translated by 谷歌翻译
机器学习中的不确定性量化(UQ)目前正在引起越来越多的研究兴趣,这是由于深度神经网络在不同领域的快速部署,例如计算机视觉,自然语言处理以及对风险敏感应用程序中可靠的工具的需求。最近,还开发了各种机器学习模型,以解决科学计算领域的问题,并适用于计算科学和工程(CSE)。物理知识的神经网络和深层操作员网络是两个这样的模型,用于求解部分微分方程和学习操作员映射。在这方面,[45]中提供了专门针对科学机器学习(SCIML)模型量身定制的UQ方法的全面研究。然而,尽管具有理论上的优点,但这些方法的实施并不简单,尤其是在大规模的CSE应用程序中,阻碍了他们在研究和行业环境中的广泛采用。在本文中,我们提出了一个开源python图书馆(https://github.com/crunch-uq4mi),称为Neuraluq,并伴有教育教程,用于以方便且结构化的方式采用SCIML的UQ方法。该图书馆既专为教育和研究目的,都支持多种现代UQ方法和SCIML模型。它基于简洁的工作流程,并促进了用户的灵活就业和易于扩展。我们首先提出了神经脉的教程,随后在四个不同的示例中证明了其适用性和效率,涉及动态系统以及高维参数和时间依赖性PDE。
translated by 谷歌翻译
随机过程提供了数学上优雅的方式模型复杂数据。从理论上讲,它们为可以编码广泛有趣的假设的功能类提供了灵活的先验。但是,实际上,难以通过优化或边缘化来有效推断,这一问题进一步加剧了大数据和高维输入空间。我们提出了一种新颖的变性自动编码器(VAE),称为先前的编码变量自动编码器($ \ pi $ vae)。 $ \ pi $ vae是有限的交换且Kolmogorov一致的,因此是一个连续的随机过程。我们使用$ \ pi $ vae学习功能类的低维嵌入。我们表明,我们的框架可以准确地学习表达功能类,例如高斯流程,也可以学习函数的属性以启用统计推断(例如log高斯过程的积分)。对于流行的任务,例如空间插值,$ \ pi $ vae在准确性和计算效率方面都达到了最先进的性能。也许最有用的是,我们证明了所学的低维独立分布的潜在空间表示提供了一种优雅,可扩展的方法,可以在概率编程语言(例如Stan)中对随机过程进行贝叶斯推断。
translated by 谷歌翻译
我们考虑了使用显微镜或X射线散射技术产生的图像数据自组装的模型的贝叶斯校准。为了说明BCP平衡结构中的随机远程疾病,我们引入了辅助变量以表示这种不确定性。然而,这些变量导致了高维图像数据的综合可能性,通常可以评估。我们使用基于测量运输的可能性方法以及图像数据的摘要统计数据来解决这一具有挑战性的贝叶斯推理问题。我们还表明,可以计算出有关模型参数的数据中的预期信息收益(EIG),而无需额外的成本。最后,我们介绍了基于二嵌段共聚物薄膜自组装和自上而下显微镜表征的ohta-kawasaki模型的数值案例研究。为了进行校准,我们介绍了一些基于域的能量和傅立叶的摘要统计数据,并使用EIG量化了它们的信息性。我们证明了拟议方法研究数据损坏和实验设计对校准结果的影响的力量。
translated by 谷歌翻译
潜在位置网络模型是网络科学的多功能工具;应用程序包括集群实体,控制因果混淆,并在未观察的图形上定义前提。估计每个节点的潜在位置通常是贝叶斯推理问题的群体,吉布斯内的大都市是最流行的近似后分布的工具。然而,众所周知,GIBBS内的大都市对于大型网络而言是低效;接受比计算成本昂贵,并且所得到的后绘高度相关。在本文中,我们提出了一个替代的马尔可夫链蒙特卡罗战略 - 使用分裂哈密顿蒙特卡罗和萤火虫蒙特卡罗的组合定义 - 利用后部分布的功能形式进行更有效的后退计算。我们展示了这些战略在吉布斯和综合网络上的其他算法中优于大都市,以及学区的教师和工作人员的真正信息共享网络。
translated by 谷歌翻译
非线性动态系统的识别仍然是整个工程的重大挑战。这项工作提出了一种基于贝叶斯过滤的方法,以提取和确定系统中未知的非线性项的贡献,可以将其视为恢复力表面类型方法的替代观点。为了实现这种识别,最初将非线性恢复力的贡献作为高斯过程建模。该高斯过程将转换为状态空间模型,并与系统的线性动态组件结合使用。然后,通过推断过滤和平滑分布,可以提取系统的内部状态和非线性恢复力。在这些状态下,可以构建非线性模型。在模拟案例研究和实验基准数据集中,该方法被证明是有效的。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
We present the GPry algorithm for fast Bayesian inference of general (non-Gaussian) posteriors with a moderate number of parameters. GPry does not need any pre-training, special hardware such as GPUs, and is intended as a drop-in replacement for traditional Monte Carlo methods for Bayesian inference. Our algorithm is based on generating a Gaussian Process surrogate model of the log-posterior, aided by a Support Vector Machine classifier that excludes extreme or non-finite values. An active learning scheme allows us to reduce the number of required posterior evaluations by two orders of magnitude compared to traditional Monte Carlo inference. Our algorithm allows for parallel evaluations of the posterior at optimal locations, further reducing wall-clock times. We significantly improve performance using properties of the posterior in our active learning scheme and for the definition of the GP prior. In particular we account for the expected dynamical range of the posterior in different dimensionalities. We test our model against a number of synthetic and cosmological examples. GPry outperforms traditional Monte Carlo methods when the evaluation time of the likelihood (or the calculation of theoretical observables) is of the order of seconds; for evaluation times of over a minute it can perform inference in days that would take months using traditional methods. GPry is distributed as an open source Python package (pip install gpry) and can also be found at https://github.com/jonaselgammal/GPry.
translated by 谷歌翻译
物理启发的潜力模型为纯粹的数据驱动工具提供可解释的替代品,用于动态系统的推断。它们携带微分方程的结构和高斯过程的灵活性,产生可解释的参数和动态施加的潜在功能。然而,与这些模型相关联的现有推理技术依赖于在分析形式中很少可用的后内核术语的精确计算。大多数与从业者相关的应用程序,例如Hill方程或扩散方程,因此是棘手的。在本文中,我们通过提出对一般类非线性和抛物面部分微分方程潜力模型的变分解决方案来克服这些计算问题。此外,我们表明,神经操作员方法可以将我们的模型扩展到数千个实例,实现快速,分布式计算。我们通过在几个任务中实现竞争性能,展示了我们框架的效力和灵活性,其中核的核心不同程度的遗传性。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
In a fissile material, the inherent multiplicity of neutrons born through induced fissions leads to correlations in their detection statistics. The correlations between neutrons can be used to trace back some characteristics of the fissile material. This technique known as neutron noise analysis has applications in nuclear safeguards or waste identification. It provides a non-destructive examination method for an unknown fissile material. This is an example of an inverse problem where the cause is inferred from observations of the consequences. However, neutron correlation measurements are often noisy because of the stochastic nature of the underlying processes. This makes the resolution of the inverse problem more complex since the measurements are strongly dependent on the material characteristics. A minor change in the material properties can lead to very different outputs. Such an inverse problem is said to be ill-posed. For an ill-posed inverse problem the inverse uncertainty quantification is crucial. Indeed, seemingly low noise in the data can lead to strong uncertainties in the estimation of the material properties. Moreover, the analytical framework commonly used to describe neutron correlations relies on strong physical assumptions and is thus inherently biased. This paper addresses dual goals. Firstly, surrogate models are used to improve neutron correlations predictions and quantify the errors on those predictions. Then, the inverse uncertainty quantification is performed to include the impact of measurement error alongside the residual model bias.
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
离散数据丰富,并且通常作为计数或圆形数据而出现。甚至对于线性回归模型,缀合格前沿和闭合形式的后部通常是不可用的,这需要近似诸如MCMC的后部推理。对于广泛的计数和圆形数据回归模型,我们介绍了能够闭合后部推理的共轭前沿。密钥后和预测功能可通过直接蒙特卡罗模拟来计算。至关重要的是,预测分布是离散的,以匹配数据的支持,并且可以在多个协变量中进行共同评估或模拟。这些工具广泛用途是线性回归,非线性模型,通过基础扩展,以及模型和变量选择。多种仿真研究表明计算,预测性建模和相对于现有替代方案的选择性的显着优势。
translated by 谷歌翻译
社会和自然中的极端事件,例如大流行尖峰,流氓波浪或结构性失败,可能会带来灾难性的后果。极端的表征很困难,因为它们很少出现,这似乎是由良性的条件引起的,并且属于复杂且通常是未知的无限维系统。这种挑战使他们将其描述为“毫无意义”。我们通过将贝叶斯实验设计(BED)中的新型训练方案与深神经操作员(DNOS)合奏结合在一起来解决这些困难。这个模型不足的框架配对了一个床方案,该床方案积极选择数据以用近似于无限二二维非线性运算符的DNO集合来量化极端事件。我们发现,这个框架不仅清楚地击败了高斯流程(GPS),而且只有两个成员的浅色合奏表现最好; 2)无论初始数据的状态如何(即有或没有极端),都会发现极端; 3)我们的方法消除了“双研究”现象; 4)与逐步全球Optima相比,使用次优的采集点的使用不会阻碍床的性能; 5)蒙特卡洛的获取优于高量级的标准优化器。这些结论共同构成了AI辅助实验基础设施的基础,该基础设施可以有效地推断并查明从物理到社会系统的许多领域的关键情况。
translated by 谷歌翻译