本文介绍了新型混合体系结构,它们结合了基于网格的处理,以改善基于雷达对象检测网络的检测性能和方向估计。纯粹基于网格的检测模型在输入点云的鸟眼视图(BEV)投影上运行。这些方法通过离散的网格分辨率损失了详细信息的损失。这特别适用于雷达对象检测,其中相对粗糙的网格分辨率通常用于解释雷达点云的稀疏性。相反,基于点的模型不会受到此问题的影响,因为它们在没有离散化的情况下处理点云。但是,它们通常表现出比基于网格的方法更差的检测性能。我们表明,基于点的模型可以在网格渲染之前提取邻域功能,利用点的确切相对位置。这对于随后的基于网格的卷积检测主链具有重大好处。在公共Nuscenes数据集的实验中,我们的混合体系结构在检测性能方面取得了改进(汽车类的地图比次要的雷达范围提交比仅限雷达提交的地图高19.7%)和方向估计值(11.5%的相对方向改善)比以前文献的网络相比。
translated by 谷歌翻译
本文提出了一种使用对象检测网络在汽车雷达数据上学习对象的笛卡尔速度的方法。提出的方法是在为速度生成自己的训练信号方面进行的。标签仅用于单帧,定向边界框(OBB)。不需要昂贵的笛卡尔速度或连续序列的标签。一般的想法是在不使用单帧OBB标签的情况下预先培训对象检测网络,然后利用网络的OBB预测未标记的数据进行速度训练。详细说明,使用预测的速度以及未标记框架的更新OBB之间的距离和标记框架的OBB预测之间的距离,将网络对未标记帧的OBB预测更新为标记帧的时间戳,用于生成一个自我的预测。监督速度的训练信号。检测网络体系结构由一个模块扩展,以说明多次扫描的时间关系和一个模块,以明确表示雷达的径向速度测量值。仅首次训练的两步方法使用OBB检测,然后使用训练OBB检测和速度。此外,由雷达径向速度测量产生的伪标记的预训练引导Bootstraps本文的自我监督方法。公开可用的Nuscenes数据集进行的实验表明,所提出的方法几乎达到了完全监督培训的速度估计性能,但不需要昂贵的速度标签。此外,我们优于基线方法,该方法仅使用径向速度测量作为标签。
translated by 谷歌翻译
我们提出了DeepFusion,这是一种模块化的多模式结构,可在不同组合中以3D对象检测为融合激光雷达,相机和雷达。专门的功能提取器可以利用每种模式,并且可以轻松交换,从而使该方法变得简单而灵活。提取的特征被转化为鸟眼视图,作为融合的共同表示。在特征空间中融合方式之前,先进行空间和语义对齐。最后,检测头利用丰富的多模式特征,以改善3D检测性能。 LIDAR相机,激光摄像头雷达和摄像头融合的实验结果显示了我们融合方法的灵活性和有效性。在此过程中,我们研究了高达225米的遥远汽车检测的很大程度上未开发的任务,显示了激光摄像机融合的好处。此外,我们研究了3D对象检测的LIDAR点所需的密度,并在对不利天气条件的鲁棒性示例中说明了含义。此外,对我们的摄像头融合的消融研究突出了准确深度估计的重要性。
translated by 谷歌翻译
在鸟眼中学习强大的表现(BEV),以进行感知任务,这是趋势和吸引行业和学术界的广泛关注。大多数自动驾驶算法的常规方法在正面或透视视图中执行检测,细分,跟踪等。随着传感器配置变得越来越复杂,从不同的传感器中集成了多源信息,并在统一视图中代表功能至关重要。 BEV感知继承了几个优势,因为代表BEV中的周围场景是直观和融合友好的。对于BEV中的代表对象,对于随后的模块,如计划和/或控制是最可取的。 BEV感知的核心问题在于(a)如何通过从透视视图到BEV来通过视图转换来重建丢失的3D信息; (b)如何在BEV网格中获取地面真理注释; (c)如何制定管道以合并来自不同来源和视图的特征; (d)如何适应和概括算法作为传感器配置在不同情况下各不相同。在这项调查中,我们回顾了有关BEV感知的最新工作,并对不同解决方案进行了深入的分析。此外,还描述了该行业的BEV方法的几种系统设计。此外,我们推出了一套完整的实用指南,以提高BEV感知任务的性能,包括相机,激光雷达和融合输入。最后,我们指出了该领域的未来研究指示。我们希望该报告能阐明社区,并鼓励对BEV感知的更多研究。我们保留一个活跃的存储库来收集最新的工作,并在https://github.com/openperceptionx/bevperception-survey-recipe上提供一包技巧的工具箱。
translated by 谷歌翻译
雷达和摄像机多模式融合的环境感知对于自动驾驶至关重要,以提高准确性,完整性和稳健性。本文着重于如何利用毫米波(MMW)雷达和相机传感器融合进行3D对象检测。提出了一种新的方法,该方法在提出了更好的特征表示形式下意识到在鸟眼视图(BEV)下的特征级融合。首先,将雷达特征通过时间积累增强,并发送到时间空间编码器以进行雷达特征提取。同时,通过图像骨干和颈部模型获得了适应各种空间尺度的多尺度图像2D特征。然后,将图像功能转换为使用设计的视图变压器。此外,这项工作将多模式特征与称为点融合和ROI融合的两阶段融合模型融合在一起。最后,检测头会回归对象类别和3D位置。实验结果表明,所提出的方法在最重要的检测指标,平均平均精度(MAP)和NUSCENES检测分数(NDS)下实现了最先进的性能。
translated by 谷歌翻译
近年来,自主驾驶LIDAR数据的3D对象检测一直在迈出卓越的进展。在最先进的方法中,已经证明了将点云进行编码为鸟瞰图(BEV)是有效且有效的。与透视图不同,BEV在物体之间保留丰富的空间和距离信息;虽然在BEV中相同类型的更远物体不会较小,但它们包含稀疏点云特征。这一事实使用共享卷积神经网络削弱了BEV特征提取。为了解决这一挑战,我们提出了范围感知注意网络(RAANET),提取更强大的BEV功能并产生卓越的3D对象检测。范围感知的注意力(RAA)卷曲显着改善了近距离的特征提取。此外,我们提出了一种新的辅助损耗,用于密度估计,以进一步增强覆盖物体的Raanet的检测精度。值得注意的是,我们提出的RAA卷积轻量级,并兼容,以集成到用于BEV检测的任何CNN架构中。 Nuscenes DataSet上的广泛实验表明,我们的提出方法优于基于LIDAR的3D对象检测的最先进的方法,具有16 Hz的实时推断速度,为LITE版本为22 Hz。该代码在匿名GitHub存储库HTTPS://github.com/Anonymous0522 / ange上公开提供。
translated by 谷歌翻译
We present AVOD, an Aggregate View Object Detection network for autonomous driving scenarios. The proposed neural network architecture uses LIDAR point clouds and RGB images to generate features that are shared by two subnetworks: a region proposal network (RPN) and a second stage detector network. The proposed RPN uses a novel architecture capable of performing multimodal feature fusion on high resolution feature maps to generate reliable 3D object proposals for multiple object classes in road scenes. Using these proposals, the second stage detection network performs accurate oriented 3D bounding box regression and category classification to predict the extents, orientation, and classification of objects in 3D space. Our proposed architecture is shown to produce state of the art results on the KITTI 3D object detection benchmark [1] while running in real time with a low memory footprint, making it a suitable candidate for deployment on autonomous vehicles. Code is at: https://github.com/kujason/avod
translated by 谷歌翻译
Aiming at highly accurate object detection for connected and automated vehicles (CAVs), this paper presents a Deep Neural Network based 3D object detection model that leverages a three-stage feature extractor by developing a novel LIDAR-Camera fusion scheme. The proposed feature extractor extracts high-level features from two input sensory modalities and recovers the important features discarded during the convolutional process. The novel fusion scheme effectively fuses features across sensory modalities and convolutional layers to find the best representative global features. The fused features are shared by a two-stage network: the region proposal network (RPN) and the detection head (DH). The RPN generates high-recall proposals, and the DH produces final detection results. The experimental results show the proposed model outperforms more recent research on the KITTI 2D and 3D detection benchmark, particularly for distant and highly occluded instances.
translated by 谷歌翻译
在过去的几年中,自动驾驶的感知系统在其表现方面取得了重大进步。但是,这些系统在极端天气条件下努力表现出稳健性,因为在这些条件下,传感器和相机等传感器套件中的主要传感器都会下降。为了解决此问题,摄像机雷达融合系统为所有可靠的高质量感知提供了独特的机会。相机提供丰富的语义信息,而雷达可以通过遮挡和在所有天气条件下工作。在这项工作中,我们表明,当摄像机输入降解时,最新的融合方法的性能很差,这实际上导致失去了他们设定的全天可靠性。与这些方法相反,我们提出了一种新方法RadSegnet,该方法使用了独立信息提取的新设计理念,并在所有情况下都可以在所有情况下真正实现可靠性,包括遮挡和不利天气。我们在基准ASTYX数据集上开发并验证了我们的系统,并在辐射数据集上进一步验证了这些结果。与最先进的方法相比,Radsegnet在ASTYX上提高了27%,辐射增长了41.46%,平均精度得分,并且在不利天气条件下的性能明显更好
translated by 谷歌翻译
In this paper, we propose a novel 3D object detector that can exploit both LIDAR as well as cameras to perform very accurate localization. Towards this goal, we design an end-to-end learnable architecture that exploits continuous convolutions to fuse image and LIDAR feature maps at different levels of resolution. Our proposed continuous fusion layer encode both discrete-state image features as well as continuous geometric information. This enables us to design a novel, reliable and efficient end-to-end learnable 3D object detector based on multiple sensors. Our experimental evaluation on both KITTI as well as a large scale 3D object detection benchmark shows significant improvements over the state of the art.
translated by 谷歌翻译
Radar, the only sensor that could provide reliable perception capability in all weather conditions at an affordable cost, has been widely accepted as a key supplement to camera and LiDAR in modern advanced driver assistance systems (ADAS) and autonomous driving systems. Recent state-of-the-art works reveal that fusion of radar and LiDAR can lead to robust detection in adverse weather, such as fog. However, these methods still suffer from low accuracy of bounding box estimations. This paper proposes a bird's-eye view (BEV) fusion learning for an anchor box-free object detection system, which uses the feature derived from the radar range-azimuth heatmap and the LiDAR point cloud to estimate the possible objects. Different label assignment strategies have been designed to facilitate the consistency between the classification of foreground or background anchor points and the corresponding bounding box regressions. Furthermore, the performance of the proposed object detector can be further enhanced by employing a novel interactive transformer module. We demonstrated the superior performance of the proposed methods in this paper using the recently published Oxford Radar RobotCar (ORR) dataset. We showed that the accuracy of our system significantly outperforms the other state-of-the-art methods by a large margin.
translated by 谷歌翻译
Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics. As a dominating technique in AI, deep learning has been successfully used to solve various 2D vision problems. However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of point clouds with deep neural networks. Recently, deep learning on point clouds has become even thriving, with numerous methods being proposed to address different problems in this area. To stimulate future research, this paper presents a comprehensive review of recent progress in deep learning methods for point clouds. It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation. It also presents comparative results on several publicly available datasets, together with insightful observations and inspiring future research directions.
translated by 谷歌翻译
实时和高性能3D对象检测对于自动驾驶至关重要。最近表现最佳的3D对象探测器主要依赖于基于点或基于3D Voxel的卷积,这两者在计算上均无效地部署。相比之下,基于支柱的方法仅使用2D卷积,从而消耗了较少的计算资源,但它们的检测准确性远远落后于基于体素的对应物。在本文中,通过检查基于支柱和体素的探测器之间的主要性能差距,我们开发了一个实时和高性能的柱子检测器,称为Pillarnet。提出的柱子由一个强大的编码网络组成,用于有效的支柱特征学习,用于空间语义特征融合的颈网和常用的检测头。仅使用2D卷积,Pillarnet具有可选的支柱尺寸的灵活性,并与经典的2D CNN骨架兼容,例如VGGNET和RESNET.ADITIONICLY,Pillarnet受益于我们设计的方向iOu decoupled iou Recressions you Recressions损失以及IOU Aware Pareace Predication Prediction Predictight offication Branch。大规模Nuscenes数据集和Waymo Open数据集的广泛实验结果表明,在有效性和效率方面,所提出的Pillarnet在最新的3D检测器上表现良好。源代码可在https://github.com/agent-sgs/pillarnet.git上找到。
translated by 谷歌翻译
合作感允许连接的自动驾驶汽车(CAV)与附近的其他骑士相互作用,以增强对周围物体的感知以提高安全性和可靠性。它可以弥补常规车辆感知的局限性,例如盲点,低分辨率和天气影响。合作感知中间融合方法的有效特征融合模型可以改善特征选择和信息聚集,以进一步提高感知精度。我们建议具有可训练的特征选择模块的自适应特征融合模型。我们提出的模型之一是通过空间自适应特征融合(S-Adafusion)在OPV2V数据集的两个子集上的所有其他最先进的模型:默认的Carla Towns用于车辆检测和用于域适应的Culver City。此外,先前的研究仅测试了合作感的车辆检测。但是,行人在交通事故中更有可能受到重伤。我们使用CODD数据集评估了车辆和行人检测的合作感的性能。与CODD数据集中的车辆和行人检测相比,我们的架构达到的平均精度(AP)高。实验表明,与常规感知过程相比,合作感也可以提高行人检测准确性。
translated by 谷歌翻译
凭借其恶劣天气条件和测量速度的能力,雷达传感器已经成为汽车景观的一部分超过二十年的鲁棒性。最近的高清晰度(HD)成像雷达的进展使角分辨率低于程度,从而接近激光扫描性能。然而,数据量为HD雷达提供和计算成本来估计角度位置仍然是一个挑战。在本文中,我们提出了一种新颖的高清雷达传感模型FFT-RADNET,其消除了计算范围 - 方位角多普勒3D张量的开销,从而从范围多普勒频谱恢复角度。 FFT-RADNET培训均以检测车辆和分段免费驾驶空间。在两个任务中,它与最新的基于雷达的模型竞争,同时需要更少的计算和内存。此外,我们在各种环境(城市街道,公路,农村路)中,从同步汽车级传感器(相机,激光,高清雷达)收集和注释了2小时的原始数据。这个独特的数据集,“雷达,lidar等人”的inc-命名的radial是在https://github.com/valeoai/radial上获得的。
translated by 谷歌翻译
基于LIDAR的3D对象检测的先前工作主要集中在单帧范式上。在本文中,我们建议通过利用多个帧的时间信息(即点云视频)来检测3D对象。我们从经验上将时间信息分为短期和长期模式。为了编码短期数据,我们提出了一个网格消息传递网络(GMPNET),该网络将每个网格(即分组点)视为节点,并用邻居网格构造K-NN图。为了更新网格的功能,gmpnet迭代从其邻居那里收集信息,从而从附近的框架中挖掘了运动提示。为了进一步汇总长期框架,我们提出了一个细心的时空变压器GRU(AST-GRU),其中包含空间变压器注意(STA)模块和颞变压器注意(TTA)模块。 STA和TTA增强了香草gru,以专注于小物体并更好地对齐运动对象。我们的整体框架支持点云中的在线和离线视频对象检测。我们基于普遍的基于锚和锚的探测器实现算法。关于挑战性的Nuscenes基准的评估结果显示了我们方法的出色表现,在提交论文时,在没有任何铃铛和哨声的情况下在排行榜上获得了第一个。
translated by 谷歌翻译
We address the problem of real-time 3D object detection from point clouds in the context of autonomous driving. Computation speed is critical as detection is a necessary component for safety. Existing approaches are, however, expensive in computation due to high dimensionality of point clouds. We utilize the 3D data more efficiently by representing the scene from the Bird's Eye View (BEV), and propose PIXOR, a proposal-free, single-stage detector that outputs oriented 3D object estimates decoded from pixelwise neural network predictions. The input representation, network architecture, and model optimization are especially designed to balance high accuracy and real-time efficiency. We validate PIXOR on two datasets: the KITTI BEV object detection benchmark, and a large-scale 3D vehicle detection benchmark. In both datasets we show that the proposed detector surpasses other state-of-the-art methods notably in terms of Average Precision (AP), while still runs at > 28 FPS.
translated by 谷歌翻译
利用多模式融合,尤其是在摄像头和激光雷达之间,对于为自动驾驶汽车构建准确且健壮的3D对象检测系统已经至关重要。直到最近,点装饰方法(在该点云中都用相机功能增强,一直是该领域的主要方法。但是,这些方法无法利用来自相机的较高分辨率图像。还提出了最近将摄像头功能投射到鸟类视图(BEV)融合空间的作品,但是它们需要预计数百万像素,其中大多数仅包含背景信息。在这项工作中,我们提出了一种新颖的方法中心功能融合(CFF),其中我们利用相机和激光雷达中心的基于中心的检测网络来识别相关对象位置。然后,我们使用基于中心的检测来识别与对象位置相关的像素功能的位置,这是图像中总数的一小部分。然后将它们投射并融合在BEV框架中。在Nuscenes数据集上,我们的表现优于仅限激光雷达基线的4.9%地图,同时比其他融合方法融合了100倍。
translated by 谷歌翻译
以视觉为中心的BEV感知由于其固有的优点,最近受到行业和学术界的关注,包括展示世界自然代表和融合友好。随着深度学习的快速发展,已经提出了许多方法来解决以视觉为中心的BEV感知。但是,最近没有针对这个小说和不断发展的研究领域的调查。为了刺激其未来的研究,本文对以视觉为中心的BEV感知及其扩展进行了全面调查。它收集并组织了最近的知识,并对常用算法进行了系统的综述和摘要。它还为几项BEV感知任务提供了深入的分析和比较结果,从而促进了未来作品的比较并激发了未来的研究方向。此外,还讨论了经验实现细节并证明有利于相关算法的开发。
translated by 谷歌翻译
与LIDAR相比,相机和雷达传感器在成本,可靠性和维护方面具有显着优势。现有的融合方法通常融合了结果级别的单个模式的输出,称为后期融合策略。这可以通过使用现成的单传感器检测算法受益,但是晚融合无法完全利用传感器的互补特性,因此尽管相机雷达融合的潜力很大,但性能有限。在这里,我们提出了一种新颖的提案级早期融合方法,该方法有效利用了相机和雷达的空间和上下文特性,用于3D对象检测。我们的融合框架首先将图像建议与极坐标系中的雷达点相关联,以有效处理坐标系和空间性质之间的差异。将其作为第一阶段,遵循连续的基于交叉注意的特征融合层在相机和雷达之间自适应地交换时尚信息,从而导致强大而专心的融合。我们的摄像机雷达融合方法可在Nuscenes测试集上获得最新的41.1%地图,而NDS则达到52.3%,比仅摄像机的基线高8.7和10.8点,并在竞争性能上提高竞争性能LIDAR方法。
translated by 谷歌翻译