最小化隐私泄漏,同时确保数据实用程序是隐私保留数据发布任务中数据持有者的关键问题。大多数现有研究仅涉及一种类型的数据和度假村,以实现一个模糊的方法,\例如,混淆或泛化,以实现隐私式实用权衡,这是保护现实生活的异构数据不足,并且难以捍卫 - 生长机器学习的推论攻击。这项工作在采用异构数据保护的泛化和混淆操作时,对隐私保留数据发布进行试验研究。为此,我们首先提出了新的隐私和实用程序量化措施,并制定了混合隐私保留数据模糊问题,以解释泛化和混淆的联合效力。然后,我们设计了一种名为HyobScure的新型混合保护机制,交叉迭代优化了在某种实用程序保证下的最大隐私保护的泛化和混淆操作。理论上还提供了迭代过程的收敛性和障碍的隐私泄漏。广泛的实验表明,在不同场景下面对各种推理攻击时,横冲气度显着优于各种最先进的基线方法。 HyoBScure还线性地缩放到数据大小,并使用不同的关键参数稳健行为。
translated by 谷歌翻译
蜂窝提供商和数据聚合公司从用户设备中占群体的Celluar信号强度测量以生成信号映射,可用于提高网络性能。认识到这种数据收集可能与越来越多的隐私问题的认识可能存在赔率,我们考虑在数据离开移动设备之前混淆这些数据。目标是提高隐私,使得难以从混淆的数据(例如用户ID和用户行踪)中恢复敏感功能,同时仍然允许网络提供商使用用于改进网络服务的数据(即创建准确的信号映射)。要检查本隐私实用程序权衡,我们识别适用于信号强度测量的隐私和公用事业度量和威胁模型。然后,我们使用几种卓越的技术,跨越差异隐私,生成的对抗性隐私和信息隐私技术进行了衡量测量,以便基准,以基准获得各种有前景的混淆方法,并为真实世界的工程师提供指导,这些工程师是负责构建信号映射的现实工程师在不伤害效用的情况下保护隐私。我们的评估结果基于多个不同的现实世界信号映射数据集,展示了同时实现了充足的隐私和实用程序的可行性,并使用了使用该结构和预期使用数据集的策略以及目标平均案例的策略,而不是最坏的情况,保证。
translated by 谷歌翻译
随着移动设备和基于位置的服务越来越多地在不同的智能城市场景和应用程序中开发,由于数据收集和共享,许多意外的隐私泄漏已经出现。当与云辅助应用程序共享地理位置数据时,用户重新识别和其他敏感的推论是主要的隐私威胁。值得注意的是,四个时空点足以唯一地识别95%的个人,这加剧了个人信息泄漏。为了解决诸如用户重新识别之类的恶意目的,我们提出了一种基于LSTM的对抗机制,具有代表性学习,以实现原始地理位置数据(即移动性数据)的隐私权特征表示,以共享目的。这些表示旨在以最小的公用事业预算(即损失)最大程度地减少用户重新识别和完整数据重建的机会。我们通过量化轨迹重建风险,用户重新识别风险和移动性可预测性来量化移动性数据集的隐私性权衡权衡来训练该机制。我们报告了探索性分析,使用户能够通过特定的损失功能及其权重参数评估此权衡。四个代表性移动数据集的广泛比较结果证明了我们提出的在移动性隐私保护方面的架构的优越性以及提议的隐私权提取器提取器的效率。我们表明,流动痕迹的隐私能够以边际移动公用事业为代价获得体面的保护。我们的结果还表明,通过探索帕累托最佳设置,我们可以同时增加隐私(45%)和实用程序(32%)。
translated by 谷歌翻译
作为推荐系统的主要协作过滤方法,一位矩阵完成需要用户收集的数据来提供个性化服务。由于阴险的攻击和意外推断,用户数据的发布通常会引起严重的隐私问题。为了解决此问题,差异隐私(DP)已在标准矩阵完成模型中广泛使用。但是,迄今为止,关于如何在一位矩阵完成中应用DP来实现隐私保护的知之甚少。在本文中,我们提出了一个统一的框架,以确保使用DP对单位矩阵完成的强大隐私保证。在我们的框架中,我们开发了与一位矩阵完成的不同阶段相对应的四种不同的私人扰动机制。对于每种机制,我们设计一个隐私性算法,并提供在适当条件下绑定的理论恢复误差。关于合成和现实世界数据集的数值实验证明了我们的建议的有效性。与没有隐私保护的一位矩阵完成相比,我们提出的机制可以维持高级隐私保护,而边际丧失完成精度。
translated by 谷歌翻译
In a membership inference attack, an attacker aims to infer whether a data sample is in a target classifier's training dataset or not. Specifically, given a black-box access to the target classifier, the attacker trains a binary classifier, which takes a data sample's confidence score vector predicted by the target classifier as an input and predicts the data sample to be a member or non-member of the target classifier's training dataset. Membership inference attacks pose severe privacy and security threats to the training dataset. Most existing defenses leverage differential privacy when training the target classifier or regularize the training process of the target classifier. These defenses suffer from two key limitations: 1) they do not have formal utility-loss guarantees of the confidence score vectors, and 2) they achieve suboptimal privacy-utility tradeoffs.In this work, we propose MemGuard, the first defense with formal utility-loss guarantees against black-box membership inference attacks. Instead of tampering the training process of the target classifier, MemGuard adds noise to each confidence score vector predicted by the target classifier. Our key observation is that attacker uses a classifier to predict member or non-member and classifier is vulnerable to adversarial examples. Based on the observation, we propose to add a carefully crafted noise vector to a confidence score vector to turn it into an adversarial example that misleads the attacker's classifier. Specifically, MemGuard works in two phases. In Phase I, MemGuard finds a carefully crafted noise vector that can turn a confidence score vector into an adversarial example, which is likely to mislead the attacker's classifier to make a random guessing at member or non-member. We find such carefully crafted noise vector via a new method that we design to incorporate the unique utility-loss constraints on the noise vector. In Phase II, Mem-Guard adds the noise vector to the confidence score vector with a certain probability, which is selected to satisfy a given utility-loss budget on the confidence score vector. Our experimental results on
translated by 谷歌翻译
整合多个在线社交网络(OSN)对许多下游社交挖掘任务(例如用户偏好建模,建议和链接预测)具有重要意义。但是,不幸的是,伴随着越来越多的隐私问题,泄漏敏感用户信息。如何完全利用来自不同在线社交网络的数据,同时保存用户隐私仍然无法解决。为此,我们提出了一个跨网络的社交用户嵌入框架,即DP-Crosue,以一种隐私性的方式学习用户的全面表示。我们共同考虑具有不同隐私保证的部分调整社交网络的信息。特别是,对于每个异质社交网络,我们首先引入一个混合差异隐私概念,以捕获异构数据类型的隐私期望的变化。接下来,为了找到跨社交网络的用户链接,我们进行了无监督的基于用户嵌入的对齐方式,其中通过异质网络嵌入技术实现了用户嵌入。为了进一步增强用户嵌入,一种新颖的跨网络GCN嵌入模型旨在通过那些对齐用户跨网络传输知识。在三个现实世界数据集上进行的广泛实验表明,我们的方法对用户兴趣预测任务以及捍卫用户属性推理攻击的嵌入进行了重大改进。
translated by 谷歌翻译
在联邦学习方案中,多方共同从其各自的数据中学习模型,有两个相互矛盾的目标是选择适当的算法。一方面,必须在存在\ textit {semi-honest}合作伙伴的情况下尽可能保持私人和敏感的培训数据,而另一方面,必须在不同方之间交换一定数量的信息学习实用程序。这样的挑战要求采用隐私的联合学习解决方案,该解决方案最大程度地提高了学习模型的效用,并维护参与各方的私人数据的可证明的隐私保证。本文说明了一个一般框架,即a)从统一信息理论的角度来制定隐私损失和效用损失之间的权衡,而b)在包括随机化,包括随机性,包括随机的机制,包括随机性,,包括随机性,,包括随机性,,包括随机性,,包括随机性,,包括随机性,,包括随机性,,包括随机性,包括随机性,,使用稀疏性和同态加密。结果表明,一般而言\ textit {没有免费的午餐来进行隐私 - 私人权衡取舍},并且必须用一定程度的降级效用进行保存隐私。本文中说明的定量分析可以作为实用联合学习算法设计的指导。
translated by 谷歌翻译
在本文中,我们提出了一种方法,用于预测社交媒体对等体之间的信任链接,其中一个是在多识别信任建模的人工智能面积。特别是,我们提出了一种数据驱动的多面信任信任建模,该信任建模包括许多不同的特征以进行全面分析。我们专注于展示类似用户的聚类如何实现关键新功能:支持更个性化的,从而为用户提供更准确的预测。在信任感知项目推荐任务中说明,我们在大yelp数据集的上下文中评估所提出的框架。然后,我们讨论如何提高社交媒体的可信关系的检测可以帮助在最近爆发的社交网络环境中支持在线用户的违法行为和谣言的传播。我们的结论是关于一个特别易受资助的用户基础,老年人的反思,以说明关于用户组的推理价值,期望通过通过数据分析获得的洞察力集成已知偏好的一些未来方向。
translated by 谷歌翻译
互联网连接系统的指数增长产生了许多挑战,例如频谱短缺问题,需要有效的频谱共享(SS)解决方案。复杂和动态的SS系统可以接触不同的潜在安全性和隐私问题,需要保护机制是自适应,可靠和可扩展的。基于机器学习(ML)的方法经常提议解决这些问题。在本文中,我们对最近的基于ML的SS方法,最关键的安全问题和相应的防御机制提供了全面的调查。特别是,我们详细说明了用于提高SS通信系统的性能的最先进的方法,包括基于ML基于ML的基于的数据库辅助SS网络,ML基于基于的数据库辅助SS网络,包括基于ML的数据库辅助的SS网络,基于ML的LTE-U网络,基于ML的环境反向散射网络和其他基于ML的SS解决方案。我们还从物理层和基于ML算法的相应防御策略的安全问题,包括主要用户仿真(PUE)攻击,频谱感测数据伪造(SSDF)攻击,干扰攻击,窃听攻击和隐私问题。最后,还给出了对ML基于ML的开放挑战的广泛讨论。这种全面的审查旨在为探索新出现的ML的潜力提供越来越复杂的SS及其安全问题,提供基础和促进未来的研究。
translated by 谷歌翻译
对协作学习的实证攻击表明,深度神经网络的梯度不仅可以披露训练数据的私有潜在属性,还可以用于重建原始数据。虽然先前的作品试图量化了梯度的隐私风险,但这些措施没有建立理论上对梯度泄漏的理解了解,而不是跨越攻击者的概括,并且不能完全解释通过实际攻击在实践中通过实证攻击观察到的内容。在本文中,我们介绍了理论上激励的措施,以量化攻击依赖和攻击无关方式的信息泄漏。具体而言,我们展示了$ \ mathcal {v} $ - 信息的适应,它概括了经验攻击成功率,并允许量化可以从任何所选择的攻击模型系列泄漏的信息量。然后,我们提出了独立的措施,只需要共享梯度,用于量化原始和潜在信息泄漏。我们的经验结果,六个数据集和四种流行型号,揭示了第一层的梯度包含最高量的原始信息,而(卷积)特征提取器层之后的(完全连接的)分类层包含最高的潜在信息。此外,我们展示了如何在训练期间诸如梯度聚集的技术如何减轻信息泄漏。我们的工作为更好的防御方式铺平了道路,例如基于层的保护或强聚合。
translated by 谷歌翻译
在许多应用程序中,多方拥有有关相同用户的私人数据,但在属性的脱节集上,服务器希望利用数据来训练模型。为了在保护数据主体的隐私时启用模型学习,我们需要垂直联合学习(VFL)技术,其中数据派对仅共享用于培训模型的信息,而不是私人数据。但是,确保共享信息在学习准确的模型的同时保持隐私是一项挑战。据我们所知,本文提出的算法是第一个实用的解决方案,用于差异化垂直联合K-均值聚类,服务器可以在其中获得具有可证明的差异隐私保证的全球中心。我们的算法假设一个不受信任的中央服务器,该服务器汇总了本地数据派对的差异私有本地中心和成员资格编码。它基于收到的信息构建加权网格作为全局数据集的概要。最终中心是通过在加权网格上运行任何K-均值算法而产生的。我们的网格重量估计方法采用了基于Flajolet-Martin草图的新颖,轻巧和差异私有的相交基数估计算法。为了提高两个以上数据方的设置中的估计准确性,我们进一步提出了权重估计算法的精致版本和参数调整策略,以减少最终的K-均值实用程序,以便在中央私人环境中接近它。我们为由我们的算法计算的群集中心提供了理论实用性分析和实验评估结果,并表明我们的方法在理论上和经验上都比基于现有技术的两个基准在理论上和经验上的表现更好。
translated by 谷歌翻译
Non-negative matrix factorization is a popular unsupervised machine learning algorithm for extracting meaningful features from data which are inherently non-negative. However, such data sets may often contain privacy-sensitive user data, and therefore, we may need to take necessary steps to ensure the privacy of the users while analyzing the data. In this work, we focus on developing a Non-negative matrix factorization algorithm in the privacy-preserving framework. More specifically, we propose a novel privacy-preserving algorithm for non-negative matrix factorisation capable of operating on private data, while achieving results comparable to those of the non-private algorithm. We design the framework such that one has the control to select the degree of privacy grantee based on the utility gap. We show our proposed framework's performance in six real data sets. The experimental results show that our proposed method can achieve very close performance with the non-private algorithm under some parameter regime, while ensuring strict privacy.
translated by 谷歌翻译
Differential privacy is a strong notion for privacy that can be used to prove formal guarantees, in terms of a privacy budget, , about how much information is leaked by a mechanism. However, implementations of privacy-preserving machine learning often select large values of in order to get acceptable utility of the model, with little understanding of the impact of such choices on meaningful privacy. Moreover, in scenarios where iterative learning procedures are used, differential privacy variants that offer tighter analyses are used which appear to reduce the needed privacy budget but present poorly understood trade-offs between privacy and utility. In this paper, we quantify the impact of these choices on privacy in experiments with logistic regression and neural network models. Our main finding is that there is a huge gap between the upper bounds on privacy loss that can be guaranteed, even with advanced mechanisms, and the effective privacy loss that can be measured using current inference attacks. Current mechanisms for differentially private machine learning rarely offer acceptable utility-privacy trade-offs with guarantees for complex learning tasks: settings that provide limited accuracy loss provide meaningless privacy guarantees, and settings that provide strong privacy guarantees result in useless models.
translated by 谷歌翻译
机器学习的最新进展使其在不同领域的广泛应用程序,最令人兴奋的应用程序之一是自动驾驶汽车(AV),这鼓励了从感知到预测到计划的许多ML算法的开发。但是,培训AV通常需要从不同驾驶环境(例如城市)以及不同类型的个人信息(例如工作时间和路线)收集的大量培训数据。这种收集的大数据被视为以数据为中心的AI时代的ML新油,通常包含大量对隐私敏感的信息,这些信息很难删除甚至审核。尽管现有的隐私保护方法已经取得了某些理论和经验成功,但将它们应用于自动驾驶汽车等现实世界应用时仍存在差距。例如,当培训AVS时,不仅可以单独识别的信息揭示对隐私敏感的信息,还可以揭示人口级别的信息,例如城市内的道路建设以及AVS的专有商业秘密。因此,重新审视AV中隐私风险和相应保护方法的前沿以弥合这一差距至关重要。遵循这一目标,在这项工作中,我们为AVS中的隐私风险和保护方法提供了新的分类法,并将AV中的隐私分为三个层面:个人,人口和专有。我们明确列出了保护每个级别的隐私级别,总结这些挑战的现有解决方案,讨论课程和结论,并为研究人员和从业者提供潜在的未来方向和机会。我们认为,这项工作将有助于塑造AV中的隐私研究,并指导隐私保护技术设计。
translated by 谷歌翻译
Online personalized recommendation services are generally hosted in the cloud where users query the cloud-based model to receive recommended input such as merchandise of interest or news feed. State-of-the-art recommendation models rely on sparse and dense features to represent users' profile information and the items they interact with. Although sparse features account for 99% of the total model size, there was not enough attention paid to the potential information leakage through sparse features. These sparse features are employed to track users' behavior, e.g., their click history, object interactions, etc., potentially carrying each user's private information. Sparse features are represented as learned embedding vectors that are stored in large tables, and personalized recommendation is performed by using a specific user's sparse feature to index through the tables. Even with recently-proposed methods that hides the computation happening in the cloud, an attacker in the cloud may be able to still track the access patterns to the embedding tables. This paper explores the private information that may be learned by tracking a recommendation model's sparse feature access patterns. We first characterize the types of attacks that can be carried out on sparse features in recommendation models in an untrusted cloud, followed by a demonstration of how each of these attacks leads to extracting users' private information or tracking users by their behavior over time.
translated by 谷歌翻译
机器学习模型在许多领域都表现出了有希望的表现。但是,担心他们可能会偏向特定的群体,阻碍了他们在高级申请中的采用。因此,必须确保机器学习模型中的公平性。以前的大多数努力都需要访问敏感属性以减轻偏见。尽管如此,由于人们对隐私和法律依从性的认识日益增加,获得具有敏感属性的大规模数据通常是不可行的。因此,一个重要的研究问题是如何在隐私下做出公平的预测?在本文中,我们研究了半私人环境中公平分类的新问题,其中大多数敏感属性都是私有的,只有少量的干净敏感属性可用。为此,我们提出了一个新颖的框架Fairsp,可以首先学会通过利用有限的清洁敏感属性来纠正隐私保证下的嘈杂敏感属性。然后,它以对抗性方式共同建模校正和清洁数据以进行歧义和预测。理论分析表明,当大多数敏感属性都是私有的时,提出的模型可以确保公平。现实世界数据集的实验结果证明了所提出的模型在隐私下做出公平预测并保持高精度的有效性。
translated by 谷歌翻译
数十年来,计算机系统持有大量个人数据。一方面,这种数据丰度允许在人工智能(AI),尤其是机器学习(ML)模型中突破。另一方面,它可能威胁用户的隐私并削弱人类与人工智能之间的信任。最近的法规要求,可以从一般情况下从计算机系统中删除有关用户的私人信息,特别是根据要求从ML模型中删除(例如,“被遗忘的权利”)。虽然从后端数据库中删除数据应该很简单,但在AI上下文中,它不够,因为ML模型经常“记住”旧数据。现有的对抗攻击证明,我们可以从训练有素的模型中学习私人会员或培训数据的属性。这种现象要求采用新的范式,即机器学习,以使ML模型忘记了特定的数据。事实证明,由于缺乏共同的框架和资源,最近在机器上学习的工作无法完全解决问题。在本调查文件中,我们试图在其定义,场景,机制和应用中对机器进行彻底的研究。具体而言,作为最先进的研究的类别集合,我们希望为那些寻求机器未学习的入门及其各种表述,设计要求,删除请求,算法和用途的人提供广泛的参考。 ML申请。此外,我们希望概述范式中的关键发现和趋势,并突出显示尚未看到机器无法使用的新研究领域,但仍可以受益匪浅。我们希望这项调查为ML研究人员以及寻求创新隐私技术的研究人员提供宝贵的参考。我们的资源是在https://github.com/tamlhp/awesome-machine-unlearning上。
translated by 谷歌翻译
联合学习是一种协作机器学习,参与客户在本地处理他们的数据,仅与协作模型共享更新。这使得能够建立隐私意识的分布式机器学习模型等。目的是通过最大程度地减少一组客户本地存储的数据集的成本函数来优化统计模型的参数。这个过程使客户遇到了两个问题:私人信息的泄漏和模型的个性化缺乏。另一方面,随着分析数据的最新进步,人们对侵犯参与客户的隐私行为的关注激增。为了减轻这种情况,差异隐私及其变体是提供正式隐私保证的标准。客户通常代表非常异构的社区,并拥有非常多样化的数据。因此,与FL社区的最新重点保持一致,以为代表其多样性的用户建立个性化模型框架,这对于防止潜在威胁免受客户的敏感和个人信息而言也是至关重要的。 $ d $ - 私人是对地理位置可区分性的概括,即最近普及的位置隐私范式,它使用了一种基于公制的混淆技术,可保留原始数据的空间分布。为了解决保护客户隐私并允许个性化模型培训以增强系统的公平性和实用性的问题,我们提出了一种提供团体隐私性的方法在FL的框架下。我们为对现实世界数据集的适用性和实验验证提供了理论上的理由,以说明该方法的工作。
translated by 谷歌翻译
联合建议解决了推荐系统的数据筒仓和隐私问题。当前的联合推荐系统主要利用加密或混淆方法来保护原始评级免受泄漏。但是,前者带有额外的沟通和计算成本,后者损坏了模型的准确性。他们俩都无法同时满足推荐系统的实时反馈和准确的个性化要求。在本文中,我们提出了联合蒙面的矩阵分解(FEDMMF),以保护联邦推荐系统中的数据隐私,而无需牺牲效率和有效性。在更多详细信息中,我们介绍了仅从本地数据生成的个性化面具的新想法,并将其应用于FEDMMF。一方面,个性化面具为参与者的私人数据提供了保护,而无需损失有效。另一方面,结合自适应安全聚合协议,个性化面膜可以进一步提高效率。从理论上讲,我们为个性化面具提供安全分析。从经验上讲,我们还显示了设计模型在不同的现实世界数据集上的优越性。
translated by 谷歌翻译
在推荐系统中,一个普遍的挑战是冷门问题,在系统中,相互作用非常有限。为了应对这一挑战,最近,许多作品将元优化的想法介绍到建议方案中,即学习仅通过过去的几个交互项目来学习用户偏好。核心想法是为所有用户学习全局共享的元启动参数,并分别为每个用户迅速调整其本地参数。他们的目的是在各种用户的偏好学习中得出一般知识,以便通过博学的先验和少量培训数据迅速适应未来的新用户。但是,以前的作品表明,推荐系统通常容易受到偏见和不公平的影响。尽管元学习成功地通过冷启动提高了推荐性能,但公平性问题在很大程度上被忽略了。在本文中,我们提出了一个名为Clover的全面的公平元学习框架,以确保元学习的推荐模型的公平性。我们系统地研究了三种公平性 - 个人公平,反事实公平和推荐系统中的群体公平,并建议通过多任务对抗学习方案满足所有三种类型。我们的框架提供了一种通用的培训范式,适用于不同的元学习推荐系统。我们证明了三叶草对三个现实世界数据集的代表性元学习用户偏好估计器的有效性。经验结果表明,三叶草可以实现全面的公平性,而不会恶化整体的冷淡建议性能。
translated by 谷歌翻译