蜂窝提供商和数据聚合公司从用户设备中占群体的Celluar信号强度测量以生成信号映射,可用于提高网络性能。认识到这种数据收集可能与越来越多的隐私问题的认识可能存在赔率,我们考虑在数据离开移动设备之前混淆这些数据。目标是提高隐私,使得难以从混淆的数据(例如用户ID和用户行踪)中恢复敏感功能,同时仍然允许网络提供商使用用于改进网络服务的数据(即创建准确的信号映射)。要检查本隐私实用程序权衡,我们识别适用于信号强度测量的隐私和公用事业度量和威胁模型。然后,我们使用几种卓越的技术,跨越差异隐私,生成的对抗性隐私和信息隐私技术进行了衡量测量,以便基准,以基准获得各种有前景的混淆方法,并为真实世界的工程师提供指导,这些工程师是负责构建信号映射的现实工程师在不伤害效用的情况下保护隐私。我们的评估结果基于多个不同的现实世界信号映射数据集,展示了同时实现了充足的隐私和实用程序的可行性,并使用了使用该结构和预期使用数据集的策略以及目标平均案例的策略,而不是最坏的情况,保证。
translated by 谷歌翻译
随着移动设备和基于位置的服务越来越多地在不同的智能城市场景和应用程序中开发,由于数据收集和共享,许多意外的隐私泄漏已经出现。当与云辅助应用程序共享地理位置数据时,用户重新识别和其他敏感的推论是主要的隐私威胁。值得注意的是,四个时空点足以唯一地识别95%的个人,这加剧了个人信息泄漏。为了解决诸如用户重新识别之类的恶意目的,我们提出了一种基于LSTM的对抗机制,具有代表性学习,以实现原始地理位置数据(即移动性数据)的隐私权特征表示,以共享目的。这些表示旨在以最小的公用事业预算(即损失)最大程度地减少用户重新识别和完整数据重建的机会。我们通过量化轨迹重建风险,用户重新识别风险和移动性可预测性来量化移动性数据集的隐私性权衡权衡来训练该机制。我们报告了探索性分析,使用户能够通过特定的损失功能及其权重参数评估此权衡。四个代表性移动数据集的广泛比较结果证明了我们提出的在移动性隐私保护方面的架构的优越性以及提议的隐私权提取器提取器的效率。我们表明,流动痕迹的隐私能够以边际移动公用事业为代价获得体面的保护。我们的结果还表明,通过探索帕累托最佳设置,我们可以同时增加隐私(45%)和实用程序(32%)。
translated by 谷歌翻译
联合学习是一种协作机器学习,参与客户在本地处理他们的数据,仅与协作模型共享更新。这使得能够建立隐私意识的分布式机器学习模型等。目的是通过最大程度地减少一组客户本地存储的数据集的成本函数来优化统计模型的参数。这个过程使客户遇到了两个问题:私人信息的泄漏和模型的个性化缺乏。另一方面,随着分析数据的最新进步,人们对侵犯参与客户的隐私行为的关注激增。为了减轻这种情况,差异隐私及其变体是提供正式隐私保证的标准。客户通常代表非常异构的社区,并拥有非常多样化的数据。因此,与FL社区的最新重点保持一致,以为代表其多样性的用户建立个性化模型框架,这对于防止潜在威胁免受客户的敏感和个人信息而言也是至关重要的。 $ d $ - 私人是对地理位置可区分性的概括,即最近普及的位置隐私范式,它使用了一种基于公制的混淆技术,可保留原始数据的空间分布。为了解决保护客户隐私并允许个性化模型培训以增强系统的公平性和实用性的问题,我们提出了一种提供团体隐私性的方法在FL的框架下。我们为对现实世界数据集的适用性和实验验证提供了理论上的理由,以说明该方法的工作。
translated by 谷歌翻译
我们设计可扩展的算法,以私下生成从数百万用户设备的分散数据的位置热量。它旨在确保在服务提供商对服务提供商可见之前的差异隐私,同时保持高数据准确性和最小化用户设备的资源消耗。为实现这一目标,我们根据安全多方计算领域的最新结果重新审视分布式差异隐私概念,并设计用于位置分析的可扩展和自适应分布式差分隐私方法。关于公共位置数据集的评估表明,该方法成功地从数百万用户样本中成功地生成了大量的客户样本,最坏的客户端通信开销明显小于现有的类似准确性的现有最先进的私有协议。
translated by 谷歌翻译
我们考虑从多个移动设备收集的测量预测蜂窝网络性能(信号映射)的问题。我们制定在线联合学习框架内的问题:(i)联合学习(FL)使用户能够协作培训模型,同时保持其培训数据; (ii)由于用户移动随着时间的推移,并且用于以在线方式用于本地培训,因此收集测量。我们考虑一个诚实但很好的服务器,他们使用梯度(DLG)类型的攻击深泄漏来观察来自目标用户的更新,并使用深度泄漏(DLG)类型的攻击,最初开发的是重建DNN图像分类器的训练数据。我们使应用于我们的设置的DLG攻击的关键观察,Infers Infers Infers批次的本地数据的平均位置,因此可以用于以粗糙粒度重建目标用户的轨迹。我们表明,已经通过梯度的平均来提供适度的隐私保护,这是联合平均所固有的。此外,我们提出了一种算法,该算法可以在本地应用,以策划用于本地更新的批次,以便在不伤害实用程序的情况下有效保护其位置隐私。最后,我们表明,参与FL的多个用户的效果取决于其轨迹的相似性。据我们所知,这是第一次研究DLG攻击在众群时空数据的环境中。
translated by 谷歌翻译
在联邦学习方案中,多方共同从其各自的数据中学习模型,有两个相互矛盾的目标是选择适当的算法。一方面,必须在存在\ textit {semi-honest}合作伙伴的情况下尽可能保持私人和敏感的培训数据,而另一方面,必须在不同方之间交换一定数量的信息学习实用程序。这样的挑战要求采用隐私的联合学习解决方案,该解决方案最大程度地提高了学习模型的效用,并维护参与各方的私人数据的可证明的隐私保证。本文说明了一个一般框架,即a)从统一信息理论的角度来制定隐私损失和效用损失之间的权衡,而b)在包括随机化,包括随机性,包括随机的机制,包括随机性,,包括随机性,,包括随机性,,包括随机性,,包括随机性,,包括随机性,,包括随机性,,包括随机性,包括随机性,,使用稀疏性和同态加密。结果表明,一般而言\ textit {没有免费的午餐来进行隐私 - 私人权衡取舍},并且必须用一定程度的降级效用进行保存隐私。本文中说明的定量分析可以作为实用联合学习算法设计的指导。
translated by 谷歌翻译
联合学习允许许多设备在机器学习模型的培训中进行协作。与传统的机器学习一样,越来越关注的是,接受联合学习的模型可能会对不同的人群组表现出不同的表现。现有的解决方案来衡量和确保跨小组的平等模型绩效需要访问有关小组成员的信息,但是此访问并不总是可用或可取的,尤其是在联邦学习的隐私愿望下。我们研究了衡量此类性能差异的可行性,同时保护用户组成员资格的隐私以及联合模型在用户数据上的性能。保护两者对于隐私至关重要,因为它们可能是相关的,因此学习一个可能会揭示另一个。另一方面,从公用事业的角度来看,保留隐私的数据应保持相关性,以确保能够对性能差异进行准确的测量。我们通过开发当地差异化的私人机制来实现这两个目标,从而保留小组成员和模型绩效之间的相关性。为了分析机制的有效性,我们在对给定隐私预算进行优化时估算差异时的错误,并在合成数据上验证这些界限。我们的结果表明,对于参与的客户数量的实际数量,错误迅速减少,这表明,与先前的工作相反,保护受保护属性的隐私不一定与确定联合模型性能的差异相抵触。
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
深度神经网络(DNNS)铰接对大型数据集的可用性的最新成功;但是,对此类数据集的培训经常为敏感培训信息构成隐私风险。在本文中,我们的目标是探讨生成模型和梯度稀疏性的力量,并提出了一种可扩展的隐私保留生成模型数据标准。与标准展示隐私保留框架相比,允许教师对一维预测进行投票,在高维梯度向量上投票在隐私保存方面具有挑战性。随着需要尺寸减少技术,我们需要在(1)之间的改进之间导航精致的权衡空间,并进行SGD收敛的放缓。为了解决这一点,我们利用通信高效学习,并通过将顶-K压缩与相应的噪声注入机构相结合,提出一种新的噪声压缩和聚集方法TopAGG。理论上,我们证明了DataLens框架保证了其生成数据的差异隐私,并提供了其收敛性的分析。为了展示DataLens的实际使用情况,我们对不同数据集进行广泛的实验,包括Mnist,Fashion-Mnist和高维Celeba,并且我们表明,DataLens显着优于其他基线DP生成模型。此外,我们改进了所提出的Topagg方法,该方法是DP SGD培训的主要构建块之一,并表明它能够在大多数情况下实现比最先进的DP SGD方法更高的效用案件。我们的代码在HTTPS://github.com/ai-secure/datalens公开提供。
translated by 谷歌翻译
从公共机器学习(ML)模型中泄漏数据是一个越来越重要的领域,因为ML的商业和政府应用可以利用多个数据源,可能包括用户和客户的敏感数据。我们对几个方面的当代进步进行了全面的调查,涵盖了非自愿数据泄漏,这对ML模型很自然,潜在的恶毒泄漏是由隐私攻击引起的,以及目前可用的防御机制。我们专注于推理时间泄漏,这是公开可用模型的最可能场景。我们首先在不同的数据,任务和模型体系结构的背景下讨论什么是泄漏。然后,我们提出了跨非自愿和恶意泄漏的分类法,可用的防御措施,然后进行当前可用的评估指标和应用。我们以杰出的挑战和开放性的问题结束,概述了一些有希望的未来研究方向。
translated by 谷歌翻译
鉴于对机器学习模型的访问,可以进行对手重建模型的培训数据?这项工作从一个强大的知情对手的镜头研究了这个问题,他们知道除了一个之外的所有培训数据点。通过实例化混凝土攻击,我们表明重建此严格威胁模型中的剩余数据点是可行的。对于凸模型(例如Logistic回归),重建攻击很简单,可以以封闭形式导出。对于更常规的模型(例如神经网络),我们提出了一种基于训练的攻击策略,该攻击策略接收作为输入攻击的模型的权重,并产生目标数据点。我们展示了我们对MNIST和CIFAR-10训练的图像分类器的攻击的有效性,并系统地研究了标准机器学习管道的哪些因素影响重建成功。最后,我们从理论上调查了有多差异的隐私足以通过知情对手减轻重建攻击。我们的工作提供了有效的重建攻击,模型开发人员可以用于评估超出以前作品中考虑的一般设置中的个别点的记忆(例如,生成语言模型或访问培训梯度);它表明,标准模型具有存储足够信息的能力,以实现培训数据点的高保真重建;它表明,差异隐私可以成功减轻该参数制度中的攻击,其中公用事业劣化最小。
translated by 谷歌翻译
Distributing machine learning predictors enables the collection of large-scale datasets while leaving sensitive raw data at trustworthy sites. We show that locally training support vector machines (SVMs) and computing their averages leads to a learning technique that is scalable to a large number of users, satisfies differential privacy, and is applicable to non-trivial tasks, such as CIFAR-10. For a large number of participants, communication cost is one of the main challenges. We achieve a low communication cost by requiring only a single invocation of an efficient secure multiparty summation protocol. By relying on state-of-the-art feature extractors (SimCLR), we are able to utilize differentially private convex learners for non-trivial tasks such as CIFAR-10. Our experimental results illustrate that for $1{,}000$ users with $50$ data points each, our scheme outperforms state-of-the-art scalable distributed learning methods (differentially private federated learning, short DP-FL) while requiring around $500$ times fewer communication costs: For CIFAR-10, we achieve a classification accuracy of $79.7\,\%$ for an $\varepsilon = 0.59$ while DP-FL achieves $57.6\,\%$. More generally, we prove learnability properties for the average of such locally trained models: convergence and uniform stability. By only requiring strongly convex, smooth, and Lipschitz-continuous objective functions, locally trained via stochastic gradient descent (SGD), we achieve a strong utility-privacy tradeoff.
translated by 谷歌翻译
Differential privacy is a strong notion for privacy that can be used to prove formal guarantees, in terms of a privacy budget, , about how much information is leaked by a mechanism. However, implementations of privacy-preserving machine learning often select large values of in order to get acceptable utility of the model, with little understanding of the impact of such choices on meaningful privacy. Moreover, in scenarios where iterative learning procedures are used, differential privacy variants that offer tighter analyses are used which appear to reduce the needed privacy budget but present poorly understood trade-offs between privacy and utility. In this paper, we quantify the impact of these choices on privacy in experiments with logistic regression and neural network models. Our main finding is that there is a huge gap between the upper bounds on privacy loss that can be guaranteed, even with advanced mechanisms, and the effective privacy loss that can be measured using current inference attacks. Current mechanisms for differentially private machine learning rarely offer acceptable utility-privacy trade-offs with guarantees for complex learning tasks: settings that provide limited accuracy loss provide meaningless privacy guarantees, and settings that provide strong privacy guarantees result in useless models.
translated by 谷歌翻译
本文考虑了在黑匣子场景中估算系统信息泄露的问题。假设系统的内部结构未知为学习者,或者无论如何都是过于复杂的分析,并且唯一可用信息是对输入输出数据样本的对,可能通过向系统提交查询或由第三方提供而获得。以前的研究主要集中在计算频率上估计输入输出条件概率(称为频率方法),但是当可能输出的域大时,此方法不准确。为了克服这种困难,最近使用机器学习(ML)模型来研究理想分类器的贝叶斯误差的估计,并且由于这些模型来学习输入输出对应的能力,它已被证明更准确。但是,贝叶斯脆弱性仅适合描述一次尝试攻击。更一般和灵活的泄漏量是G-漏洞,包括几种不同类型的对手,具有不同的目标和能力。在本文中,我们提出了一种新的方法来使用ML进行黑盒估计G-漏洞的估计。我们的方法的特点是它不需要估计条件概率,并且它适用于大类ML算法。首先,我们正式显示所有数据分布的可读性。然后,我们通过使用K-CORMATE邻居和神经网络通过各种实验评估性能。当可观察到域大时,我们的结果胜过频率的方法。
translated by 谷歌翻译
联合学习使多个用户能够通过共享其模型更新(渐变)来构建联合模型,而其原始数据在其设备上保持本地。与常见的信念相比,这提供了隐私福利,我们在共享渐变时,我们在这里增加了隐私风险的最新结果。具体而言,我们调查梯度(LLG)的标签泄漏,这是一种新建攻击,从他们的共享梯度提取用户培训数据的标签。该攻击利用梯度的方向和幅度来确定任何标签的存在或不存在。 LLG简单且有效,能够泄漏由标签表示的电位敏感信息,并缩放到任意批量尺寸和多个类别。在数学上以及经验上证明了不同设置下攻击的有效性。此外,经验结果表明,LLG在模型训练的早期阶段以高精度成功提取标签。我们还讨论了针对这种泄漏的不同防御机制。我们的研究结果表明,梯度压缩是减轻攻击的实用技术。
translated by 谷歌翻译
在联合学习(FL)中,数据不会在联合培训机器学习模型时留下个人设备。相反,这些设备与中央党(例如,公司)共享梯度。因为数据永远不会“离开”个人设备,因此FL作为隐私保留呈现。然而,最近显示这种保护是一个薄的外观,甚至是一种被动攻击者观察梯度可以重建各个用户的数据。在本文中,我们争辩说,事先工作仍然很大程度上低估了FL的脆弱性。这是因为事先努力专门考虑被动攻击者,这些攻击者是诚实但好奇的。相反,我们介绍了一个活跃和不诚实的攻击者,作为中央会,他们能够在用户计算模型渐变之前修改共享模型的权重。我们称之为修改的重量“陷阱重量”。我们的活跃攻击者能够完全恢复用户数据,并在接近零成本时:攻击不需要复杂的优化目标。相反,它利用了模型梯度的固有数据泄漏,并通过恶意改变共享模型的权重来放大这种效果。这些特异性使我们的攻击能够扩展到具有大型迷你批次数据的模型。如果来自现有工作的攻击者需要小时才能恢复单个数据点,我们的方法需要毫秒来捕获完全连接和卷积的深度神经网络的完整百分之批次数据。最后,我们考虑缓解。我们观察到,FL中的差异隐私(DP)的当前实现是有缺陷的,因为它们明确地信任中央会,并在增加DP噪音的关键任务,因此不提供对恶意中央党的保护。我们还考虑其他防御,并解释为什么它们类似地不足。它需要重新设计FL,为用户提供任何有意义的数据隐私。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
智能仪表(SMS)能够几乎实时与实用程序提供者的功耗。这些细粒度的信号携带有关用户的敏感信息,从隐私观点提出了严重问题。在本文中,我们专注于实时隐私威胁,即尝试以在线方式从短信数据推断敏感信息的潜在攻击者。我们采用信息理论隐私措施,并表明它有效地限制了任何攻击者的表现。然后,我们提出了一种普遍的制定来设计一种私有化机制,可以通过向SMS测量增加最小的失真量来提供目标水平。另一方面,为了应对不同的应用,考虑灵活的失真度量。该配方导致一般损失函数,其使用深入学习的对抗性框架进行了优化,其中两个神经网络 - 被称为释放器和对手 - 受到相反的目标训练。然后执行详尽的经验研究以验证所提出的方法的性能,并将其与最先进的方法进行比较,以便占用检测隐私问题。最后,我们还研究了释放者和攻击者之间数据不匹配的影响。
translated by 谷歌翻译
This paper describes a testing methodology for quantitatively assessing the risk that rare or unique training-data sequences are unintentionally memorized by generative sequence models-a common type of machine-learning model. Because such models are sometimes trained on sensitive data (e.g., the text of users' private messages), this methodology can benefit privacy by allowing deep-learning practitioners to select means of training that minimize such memorization.In experiments, we show that unintended memorization is a persistent, hard-to-avoid issue that can have serious consequences. Specifically, for models trained without consideration of memorization, we describe new, efficient procedures that can extract unique, secret sequences, such as credit card numbers. We show that our testing strategy is a practical and easy-to-use first line of defense, e.g., by describing its application to quantitatively limit data exposure in Google's Smart Compose, a commercial text-completion neural network trained on millions of users' email messages.
translated by 谷歌翻译
Machine learning techniques based on neural networks are achieving remarkable results in a wide variety of domains. Often, the training of models requires large, representative datasets, which may be crowdsourced and contain sensitive information. The models should not expose private information in these datasets. Addressing this goal, we develop new algorithmic techniques for learning and a refined analysis of privacy costs within the framework of differential privacy. Our implementation and experiments demonstrate that we can train deep neural networks with non-convex objectives, under a modest privacy budget, and at a manageable cost in software complexity, training efficiency, and model quality. * Google.† OpenAI. Work done while at Google.
translated by 谷歌翻译