随着移动设备和基于位置的服务越来越多地在不同的智能城市场景和应用程序中开发,由于数据收集和共享,许多意外的隐私泄漏已经出现。当与云辅助应用程序共享地理位置数据时,用户重新识别和其他敏感的推论是主要的隐私威胁。值得注意的是,四个时空点足以唯一地识别95%的个人,这加剧了个人信息泄漏。为了解决诸如用户重新识别之类的恶意目的,我们提出了一种基于LSTM的对抗机制,具有代表性学习,以实现原始地理位置数据(即移动性数据)的隐私权特征表示,以共享目的。这些表示旨在以最小的公用事业预算(即损失)最大程度地减少用户重新识别和完整数据重建的机会。我们通过量化轨迹重建风险,用户重新识别风险和移动性可预测性来量化移动性数据集的隐私性权衡权衡来训练该机制。我们报告了探索性分析,使用户能够通过特定的损失功能及其权重参数评估此权衡。四个代表性移动数据集的广泛比较结果证明了我们提出的在移动性隐私保护方面的架构的优越性以及提议的隐私权提取器提取器的效率。我们表明,流动痕迹的隐私能够以边际移动公用事业为代价获得体面的保护。我们的结果还表明,通过探索帕累托最佳设置,我们可以同时增加隐私(45%)和实用程序(32%)。
translated by 谷歌翻译
蜂窝提供商和数据聚合公司从用户设备中占群体的Celluar信号强度测量以生成信号映射,可用于提高网络性能。认识到这种数据收集可能与越来越多的隐私问题的认识可能存在赔率,我们考虑在数据离开移动设备之前混淆这些数据。目标是提高隐私,使得难以从混淆的数据(例如用户ID和用户行踪)中恢复敏感功能,同时仍然允许网络提供商使用用于改进网络服务的数据(即创建准确的信号映射)。要检查本隐私实用程序权衡,我们识别适用于信号强度测量的隐私和公用事业度量和威胁模型。然后,我们使用几种卓越的技术,跨越差异隐私,生成的对抗性隐私和信息隐私技术进行了衡量测量,以便基准,以基准获得各种有前景的混淆方法,并为真实世界的工程师提供指导,这些工程师是负责构建信号映射的现实工程师在不伤害效用的情况下保护隐私。我们的评估结果基于多个不同的现实世界信号映射数据集,展示了同时实现了充足的隐私和实用程序的可行性,并使用了使用该结构和预期使用数据集的策略以及目标平均案例的策略,而不是最坏的情况,保证。
translated by 谷歌翻译
机器学习的最新进展使其在不同领域的广泛应用程序,最令人兴奋的应用程序之一是自动驾驶汽车(AV),这鼓励了从感知到预测到计划的许多ML算法的开发。但是,培训AV通常需要从不同驾驶环境(例如城市)以及不同类型的个人信息(例如工作时间和路线)收集的大量培训数据。这种收集的大数据被视为以数据为中心的AI时代的ML新油,通常包含大量对隐私敏感的信息,这些信息很难删除甚至审核。尽管现有的隐私保护方法已经取得了某些理论和经验成功,但将它们应用于自动驾驶汽车等现实世界应用时仍存在差距。例如,当培训AVS时,不仅可以单独识别的信息揭示对隐私敏感的信息,还可以揭示人口级别的信息,例如城市内的道路建设以及AVS的专有商业秘密。因此,重新审视AV中隐私风险和相应保护方法的前沿以弥合这一差距至关重要。遵循这一目标,在这项工作中,我们为AVS中的隐私风险和保护方法提供了新的分类法,并将AV中的隐私分为三个层面:个人,人口和专有。我们明确列出了保护每个级别的隐私级别,总结这些挑战的现有解决方案,讨论课程和结论,并为研究人员和从业者提供潜在的未来方向和机会。我们认为,这项工作将有助于塑造AV中的隐私研究,并指导隐私保护技术设计。
translated by 谷歌翻译
“轨迹”是指由地理空间中的移动物体产生的迹线,通常由一系列按时间顺序排列的点表示,其中每个点由地理空间坐标集和时间戳组成。位置感应和无线通信技术的快速进步使我们能够收集和存储大量的轨迹数据。因此,许多研究人员使用轨迹数据来分析各种移动物体的移动性。在本文中,我们专注于“城市车辆轨迹”,这是指城市交通网络中车辆的轨迹,我们专注于“城市车辆轨迹分析”。城市车辆轨迹分析提供了前所未有的机会,可以了解城市交通网络中的车辆运动模式,包括以用户为中心的旅行经验和系统范围的时空模式。城市车辆轨迹数据的时空特征在结构上相互关联,因此,许多先前的研究人员使用了各种方法来理解这种结构。特别是,由于其强大的函数近似和特征表示能力,深度学习模型是由于许多研究人员的注意。因此,本文的目的是开发基于深度学习的城市车辆轨迹分析模型,以更好地了解城市交通网络的移动模式。特别是,本文重点介绍了两项研究主题,具有很高的必要性,重要性和适用性:下一个位置预测,以及合成轨迹生成。在这项研究中,我们向城市车辆轨迹分析提供了各种新型模型,使用深度学习。
translated by 谷歌翻译
从公共机器学习(ML)模型中泄漏数据是一个越来越重要的领域,因为ML的商业和政府应用可以利用多个数据源,可能包括用户和客户的敏感数据。我们对几个方面的当代进步进行了全面的调查,涵盖了非自愿数据泄漏,这对ML模型很自然,潜在的恶毒泄漏是由隐私攻击引起的,以及目前可用的防御机制。我们专注于推理时间泄漏,这是公开可用模型的最可能场景。我们首先在不同的数据,任务和模型体系结构的背景下讨论什么是泄漏。然后,我们提出了跨非自愿和恶意泄漏的分类法,可用的防御措施,然后进行当前可用的评估指标和应用。我们以杰出的挑战和开放性的问题结束,概述了一些有希望的未来研究方向。
translated by 谷歌翻译
窃取对受控信息的攻击,以及越来越多的信息泄漏事件,已成为近年来新兴网络安全威胁。由于蓬勃发展和部署先进的分析解决方案,新颖的窃取攻击利用机器学习(ML)算法来实现高成功率并导致大量损坏。检测和捍卫这种攻击是挑战性和紧迫的,因此政府,组织和个人应该非常重视基于ML的窃取攻击。本调查显示了这种新型攻击和相应对策的最新进展。以三类目标受控信息的视角审查了基于ML的窃取攻击,包括受控用户活动,受控ML模型相关信息和受控认证信息。最近的出版物总结了概括了总体攻击方法,并导出了基于ML的窃取攻击的限制和未来方向。此外,提出了从三个方面制定有效保护的对策 - 检测,破坏和隔离。
translated by 谷歌翻译
Accurate activity location prediction is a crucial component of many mobility applications and is particularly required to develop personalized, sustainable transportation systems. Despite the widespread adoption of deep learning models, next location prediction models lack a comprehensive discussion and integration of mobility-related spatio-temporal contexts. Here, we utilize a multi-head self-attentional (MHSA) neural network that learns location transition patterns from historical location visits, their visit time and activity duration, as well as their surrounding land use functions, to infer an individual's next location. Specifically, we adopt point-of-interest data and latent Dirichlet allocation for representing locations' land use contexts at multiple spatial scales, generate embedding vectors of the spatio-temporal features, and learn to predict the next location with an MHSA network. Through experiments on two large-scale GNSS tracking datasets, we demonstrate that the proposed model outperforms other state-of-the-art prediction models, and reveal the contribution of various spatio-temporal contexts to the model's performance. Moreover, we find that the model trained on population data achieves higher prediction performance with fewer parameters than individual-level models due to learning from collective movement patterns. We also reveal mobility conducted in the recent past and one week before has the largest influence on the current prediction, showing that learning from a subset of the historical mobility is sufficient to obtain an accurate location prediction result. We believe that the proposed model is vital for context-aware mobility prediction. The gained insights will help to understand location prediction models and promote their implementation for mobility applications.
translated by 谷歌翻译
本文提出了一个传感器数据匿名模型,该模型接受了分散数据的培训,并在数据实用程序和隐私之间进行了理想的权衡,即使在收集到的传感器数据具有不同的基础分布的异质环境中也是如此。我们称为Blinder的匿名模型基于以对抗性方式训练的变异自动编码器和歧视网络。我们使用模型 - 不合稳定元学习框架来调整通过联合学习训练的匿名模型,以适应每个用户的数据分布。我们在不同的设置下评估了盲人,并表明它提供了端到端的隐私保护,以增加隐私损失高达4.00%,并将数据实用程序降低高达4.24%,而最新的数据实用程序则将其降低了4.24%。对集中数据培训的匿名模型。我们的实验证实,Blinder可以一次掩盖多个私人属性,并且具有足够低的功耗和计算开销,以便将其部署在边缘设备和智能手机上,以执行传感器数据的实时匿名化。
translated by 谷歌翻译
估计路径的旅行时间是智能运输系统的重要主题。它是现实世界应用的基础,例如交通监控,路线计划和出租车派遣。但是,为这样的数据驱动任务构建模型需要大量用户的旅行信息,这与其隐私直接相关,因此不太可能共享。数据所有者之间的非独立和相同分布的(非IID)轨迹数据也使一个预测模型变得极具挑战性,如果我们直接应用联合学习。最后,以前关于旅行时间估算的工作并未考虑道路的实时交通状态,我们认为这可以极大地影响预测。为了应对上述挑战,我们为移动用户组引入GOF-TTE,生成的在线联合学习框架以进行旅行时间估计,这是我)使用联合学习方法,允许在培训时将私人数据保存在客户端设备上,并设计设计和设计。所有客户共享的全球模型作为在线生成模型推断实时道路交通状态。 ii)除了在服务器上共享基本模型外,还针对每个客户调整了一个微调的个性化模型来研究其个人驾驶习惯,从而弥补了本地化全球模型预测的残余错误。 %iii)将全球模型设计为所有客户共享的在线生成模型,以推断实时道路交通状态。我们还对我们的框架采用了简单的隐私攻击,并实施了差异隐私机制,以进一步保证隐私安全。最后,我们对Didi Chengdu和Xi'an的两个现实世界公共出租车数据集进行了实验。实验结果证明了我们提出的框架的有效性。
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
我们考虑从多个移动设备收集的测量预测蜂窝网络性能(信号映射)的问题。我们制定在线联合学习框架内的问题:(i)联合学习(FL)使用户能够协作培训模型,同时保持其培训数据; (ii)由于用户移动随着时间的推移,并且用于以在线方式用于本地培训,因此收集测量。我们考虑一个诚实但很好的服务器,他们使用梯度(DLG)类型的攻击深泄漏来观察来自目标用户的更新,并使用深度泄漏(DLG)类型的攻击,最初开发的是重建DNN图像分类器的训练数据。我们使应用于我们的设置的DLG攻击的关键观察,Infers Infers Infers批次的本地数据的平均位置,因此可以用于以粗糙粒度重建目标用户的轨迹。我们表明,已经通过梯度的平均来提供适度的隐私保护,这是联合平均所固有的。此外,我们提出了一种算法,该算法可以在本地应用,以策划用于本地更新的批次,以便在不伤害实用程序的情况下有效保护其位置隐私。最后,我们表明,参与FL的多个用户的效果取决于其轨迹的相似性。据我们所知,这是第一次研究DLG攻击在众群时空数据的环境中。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
互联网连接系统的指数增长产生了许多挑战,例如频谱短缺问题,需要有效的频谱共享(SS)解决方案。复杂和动态的SS系统可以接触不同的潜在安全性和隐私问题,需要保护机制是自适应,可靠和可扩展的。基于机器学习(ML)的方法经常提议解决这些问题。在本文中,我们对最近的基于ML的SS方法,最关键的安全问题和相应的防御机制提供了全面的调查。特别是,我们详细说明了用于提高SS通信系统的性能的最先进的方法,包括基于ML基于ML的基于的数据库辅助SS网络,ML基于基于的数据库辅助SS网络,包括基于ML的数据库辅助的SS网络,基于ML的LTE-U网络,基于ML的环境反向散射网络和其他基于ML的SS解决方案。我们还从物理层和基于ML算法的相应防御策略的安全问题,包括主要用户仿真(PUE)攻击,频谱感测数据伪造(SSDF)攻击,干扰攻击,窃听攻击和隐私问题。最后,还给出了对ML基于ML的开放挑战的广泛讨论。这种全面的审查旨在为探索新出现的ML的潜力提供越来越复杂的SS及其安全问题,提供基础和促进未来的研究。
translated by 谷歌翻译
良好的培训数据是开发有用的ML应用程序的先决条件。但是,在许多域中,现有数据集不能由于隐私法规(例如,从医学研究)而被共享。这项工作调查了一种简单而非规范的方法,可以匿名数据综合来使第三方能够受益于此类私人数据。我们探讨了从不切实际,任务相关的刺激中隐含地学习的可行性,这通过激发训练有素的深神经网络(DNN)的神经元来合成。因此,神经元励磁用作伪生成模型。刺激数据用于培训新的分类模型。此外,我们将此框架扩展以抑制与特定个人相关的表示。我们使用开放和大型闭合临床研究的睡眠监测数据,并评估(1)最终用户是否可以创建和成功使用定制分类模型进行睡眠呼吸暂停检测,并且(2)研究中参与者的身份受到保护。广泛的比较实证研究表明,在刺激上培训的不同算法能够在与原始模型相同的任务上成功概括。然而,新和原始模型之间的架构和算法相似性在性能方面发挥着重要作用。对于类似的架构,性能接近使用真实数据(例如,精度差为0.56 \%,Kappa系数差为0.03-0.04)。进一步的实验表明,刺激可以在很大程度上成功地匿名匿名研究临床研究的参与者。
translated by 谷歌翻译
联合学习是一种协作机器学习,参与客户在本地处理他们的数据,仅与协作模型共享更新。这使得能够建立隐私意识的分布式机器学习模型等。目的是通过最大程度地减少一组客户本地存储的数据集的成本函数来优化统计模型的参数。这个过程使客户遇到了两个问题:私人信息的泄漏和模型的个性化缺乏。另一方面,随着分析数据的最新进步,人们对侵犯参与客户的隐私行为的关注激增。为了减轻这种情况,差异隐私及其变体是提供正式隐私保证的标准。客户通常代表非常异构的社区,并拥有非常多样化的数据。因此,与FL社区的最新重点保持一致,以为代表其多样性的用户建立个性化模型框架,这对于防止潜在威胁免受客户的敏感和个人信息而言也是至关重要的。 $ d $ - 私人是对地理位置可区分性的概括,即最近普及的位置隐私范式,它使用了一种基于公制的混淆技术,可保留原始数据的空间分布。为了解决保护客户隐私并允许个性化模型培训以增强系统的公平性和实用性的问题,我们提出了一种提供团体隐私性的方法在FL的框架下。我们为对现实世界数据集的适用性和实验验证提供了理论上的理由,以说明该方法的工作。
translated by 谷歌翻译
通信技术和互联网的最新进展与人工智能(AI)启用了智能医疗保健。传统上,由于现代医疗保健网络的高性性和日益增长的数据隐私问题,AI技术需要集中式数据收集和处理,这可能在现实的医疗环境中可能是不可行的。作为一个新兴的分布式协作AI范例,通过协调多个客户(例如,医院)来执行AI培训而不共享原始数据,对智能医疗保健特别有吸引力。因此,我们对智能医疗保健的使用提供了全面的调查。首先,我们在智能医疗保健中展示了近期进程,动机和使用FL的要求。然后讨论了近期智能医疗保健的FL设计,从资源感知FL,安全和隐私感知到激励FL和个性化FL。随后,我们对关键医疗领域的FL新兴应用提供了最先进的综述,包括健康数据管理,远程健康监测,医学成像和Covid-19检测。分析了几个最近基于智能医疗保健项目,并突出了从调查中学到的关键经验教训。最后,我们讨论了智能医疗保健未来研究的有趣研究挑战和可能的指示。
translated by 谷歌翻译
Differentially Private Stochastic Gradient Descent (DP-SGD) is a key method for applying privacy in the training of deep learning models. This applies isotropic Gaussian noise to gradients during training, which can perturb these gradients in any direction, damaging utility. Metric DP, however, can provide alternative mechanisms based on arbitrary metrics that might be more suitable. In this paper we apply \textit{directional privacy}, via a mechanism based on the von Mises-Fisher (VMF) distribution, to perturb gradients in terms of \textit{angular distance} so that gradient direction is broadly preserved. We show that this provides $\epsilon d$-privacy for deep learning training, rather than the $(\epsilon, \delta)$-privacy of the Gaussian mechanism; and that experimentally, on key datasets, the VMF mechanism can outperform the Gaussian in the utility-privacy trade-off.
translated by 谷歌翻译
最小化隐私泄漏,同时确保数据实用程序是隐私保留数据发布任务中数据持有者的关键问题。大多数现有研究仅涉及一种类型的数据和度假村,以实现一个模糊的方法,\例如,混淆或泛化,以实现隐私式实用权衡,这是保护现实生活的异构数据不足,并且难以捍卫 - 生长机器学习的推论攻击。这项工作在采用异构数据保护的泛化和混淆操作时,对隐私保留数据发布进行试验研究。为此,我们首先提出了新的隐私和实用程序量化措施,并制定了混合隐私保留数据模糊问题,以解释泛化和混淆的联合效力。然后,我们设计了一种名为HyobScure的新型混合保护机制,交叉迭代优化了在某种实用程序保证下的最大隐私保护的泛化和混淆操作。理论上还提供了迭代过程的收敛性和障碍的隐私泄漏。广泛的实验表明,在不同场景下面对各种推理攻击时,横冲气度显着优于各种最先进的基线方法。 HyoBScure还线性地缩放到数据大小,并使用不同的关键参数稳健行为。
translated by 谷歌翻译
下一个利益点(POI)的建议已成为基于位置的社交网络(LBSN)中必不可少的功能,因为它在帮助人们决定下一个POI访问方面有效。但是,准确的建议需要大量的历史检查数据,因此威胁用户隐私,因为云服务器需要处理位置敏感的数据。尽管有几个用于保护隐私的POI建议的设备框架,但在存储和计算方面,它们仍然是资源密集的,并且对用户POI交互的高稀疏性表现出有限的鲁棒性。在此基础上,我们为POI推荐(DCLR)提出了一个新颖的分散协作学习框架,该框架允许用户以协作方式在本地培训其个性化模型。 DCLR大大降低了本地模型对云的依赖性训练,并可用于扩展任意的集中建议模型。为了抵消在学习每个本地模型时在设备用户数据的稀疏性,我们设计了两个自学信号,以通过POI的地理和分类相关性在服务器上预处理POI表示。为了促进协作学习,我们创新建议将来自地理或语义上类似用户的知识纳入每个本地模型,并以细心的聚合和相互信息最大化。协作学习过程可利用设备之间的通信,同时仅需要中央服务器的少量参与来识别用户组,并且与诸如差异隐私之类的常见隐私保护机制兼容。我们使用两个现实世界数据集评估了DCLR,结果表明,与集中式同行相比,DCLR的表现优于最先进的设备框架,并产生竞争结果。
translated by 谷歌翻译
随着移动通信技术的快速发展,人类的移动轨迹由互联网服务提供商(ISP)和应用服务提供商(ASP)大规模收集。另一方面,知识图(kg)的上升范式为我们提供了一个有希望的解决方案,可以从大规模轨迹数据提取结构化的“知识”。在本文中,我们基于知识图技术专注于建模用户的时空移动模式,并根据从多个源以凝聚力的方式提取的“知识”,预测用户的未来运动。具体来说,我们提出了一种新型知识图中,即时空城市知识图(STKG),其中活动轨迹,场地的类别信息和时间信息都是由STKG中不同关系类型的事实共同建模。移动预测问题转换为知识图表在STKG中完成问题。此外,提出了一种具有精心设计的评分功能的复杂嵌入模型,以衡量STKG中的事实的合理性,以解决知识图形完成问题,这考虑了移动性模式的时间动态,并利用POI类别作为辅助信息和背景知识。广泛的评估确认我们模型在预测用户方面的高精度与最先进的算法相比,S'Mobility,即,提高了5.04%的准确性。此外,POI类别作为背景知识和辅助信息被证实通过在准确性方面提高了3.85%的性能,有助于提高。另外,实验表明,与现有方法相比,我们的所提出的方法通过将计算时间降低43.12%以上。
translated by 谷歌翻译