This paper investigates how hate speech varies in systematic ways according to the identities it targets. Across multiple hate speech datasets annotated for targeted identities, we find that classifiers trained on hate speech targeting specific identity groups struggle to generalize to other targeted identities. This provides empirical evidence for differences in hate speech by target identity; we then investigate which patterns structure this variation. We find that the targeted demographic category (e.g. gender/sexuality or race/ethnicity) appears to have a greater effect on the language of hate speech than does the relative social power of the targeted identity group. We also find that words associated with hate speech targeting specific identities often relate to stereotypes, histories of oppression, current social movements, and other social contexts specific to identities. These experiments suggest the importance of considering targeted identity, as well as the social contexts associated with these identities, in automated hate speech classification.
translated by 谷歌翻译
构建用于仇恨语音检测的基准数据集具有各种挑战。首先,因为仇恨的言论相对少见,随机抽样对诠释的推文是非常效率的发现仇恨。为了解决此问题,先前的数据集通常仅包含匹配已知的“讨厌字”的推文。然而,将数据限制为预定义的词汇表可能排除我们寻求模型的现实世界现象的部分。第二个挑战是仇恨言论的定义往往是高度不同和主观的。具有多种讨论仇恨言论的注释者可能不仅可能不同意彼此不同意,而且还努力符合指定的标签指南。我们的重点识别是仇恨语音的罕见和主体性类似于信息检索(IR)中的相关性。此连接表明,可以有效地应用创建IR测试集合的良好方法,以创建更好的基准数据集以进行仇恨语音。为了智能和有效地选择要注释的推文,我们应用{\ em汇集}和{em主动学习}的标准IR技术。为了提高注释的一致性和价值,我们应用{\ EM任务分解}和{\ EM注释器理由}技术。我们在Twitter上共享一个用于仇恨语音检测的新基准数据集,其提供比以前的数据集更广泛的仇恨覆盖。在这些更广泛形式的仇恨中测试时,我们还表现出现有检测模型的准确性的戏剧性降低。注册器理由我们不仅可以证明标签决策证明,而且还可以在建模中实现未来的双重监督和/或解释生成的工作机会。我们的方法的进一步细节可以在补充材料中找到。
translated by 谷歌翻译
Recent directions for offensive language detection are hierarchical modeling, identifying the type and the target of offensive language, and interpretability with offensive span annotation and prediction. These improvements are focused on English and do not transfer well to other languages because of cultural and linguistic differences. In this paper, we present the Korean Offensive Language Dataset (KOLD) comprising 40,429 comments, which are annotated hierarchically with the type and the target of offensive language, accompanied by annotations of the corresponding text spans. We collect the comments from NAVER news and YouTube platform and provide the titles of the articles and videos as the context information for the annotation process. We use these annotated comments as training data for Korean BERT and RoBERTa models and find that they are effective at offensiveness detection, target classification, and target span detection while having room for improvement for target group classification and offensive span detection. We discover that the target group distribution differs drastically from the existing English datasets, and observe that providing the context information improves the model performance in offensiveness detection (+0.3), target classification (+1.5), and target group classification (+13.1). We publicly release the dataset and baseline models.
translated by 谷歌翻译
The shift of public debate to the digital sphere has been accompanied by a rise in online hate speech. While many promising approaches for hate speech classification have been proposed, studies often focus only on a single language, usually English, and do not address three key concerns: post-deployment performance, classifier maintenance and infrastructural limitations. In this paper, we introduce a new human-in-the-loop BERT-based hate speech classification pipeline and trace its development from initial data collection and annotation all the way to post-deployment. Our classifier, trained using data from our original corpus of over 422k examples, is specifically developed for the inherently multilingual setting of Switzerland and outperforms with its F1 score of 80.5 the currently best-performing BERT-based multilingual classifier by 5.8 F1 points in German and 3.6 F1 points in French. Our systematic evaluations over a 12-month period further highlight the vital importance of continuous, human-in-the-loop classifier maintenance to ensure robust hate speech classification post-deployment.
translated by 谷歌翻译
语言的感知毒性可能会因某人的身份和信仰而有所不同,但是在收集有毒语言数据集时往往忽略这种变化,从而导致数据集和模型偏差。我们寻求理解谁,为什么,以及毒性注释的偏见背后。在两个在线研究中具有人口统计地和政治上的参与者,我们调查了注释者身份(世卫组织)和信仰的影响(为什么),从社会心理学研究中汲取仇恨言语,自由言论,种族主义信念,政治倾向等。我们解除了通过考虑三个特征的帖子作为毒性的毒性:反黑色语言,非洲裔美国英语(AAE)方言和粗俗。我们的结果显示了注释者身份和信仰之间的强有力的协会及其毒性评级。值得注意的是,更保守的注释者和那些对我们的种族信仰规模的评分的人不太可能对毒黑语言归因于毒性,但更有可能将AAE归因于毒性。我们还提供了一个案例研究,说明了流行的毒性检测系统的评级如何自然地反映特定的信念和观点。我们的调查结果要求社会变量中的毒性标签,这提高了对有毒语言注释和检测的巨大影响。
translated by 谷歌翻译
\ textbf {攻击性内容警告}:本文仅包含进攻性语言,仅用于提供阐明这项研究的示例,并且不反映作者的意见。请注意,这些例子是令人反感的,可能会导致您困扰。识别\ textit {仇恨言语}的主观性使其成为一项复杂的任务。 NLP中的不同和不完整的定义也反映了这一点。我们提出\ textit {仇恨言论}标准,以法律和社会科学的观点开发,目的是帮助研究人员创建有关五个方面的更精确的定义和注释指南:(1)目标群体,(2)优势,(3)(3)肇事者特征,(4)否定组参考的类型和(5)潜在后果/效果的类型。可以对定义进行构建,从而涵盖更广泛或更狭窄的现象。因此,可以在指定标准或使其打开的情况下做出有意识的选择。我们认为,目标开发人员的目标和确切的任务应确定\ textit {仇恨言语}的范围的定义。我们从\ url {hatespeechdata.com}概述了英语数据集的属性,该属性可能有助于为特定方案选择最合适的数据集。
translated by 谷歌翻译
We investigate how annotators' insensitivity to differences in dialect can lead to racial bias in automatic hate speech detection models, potentially amplifying harm against minority populations. We first uncover unexpected correlations between surface markers of African American English (AAE) and ratings of toxicity in several widely-used hate speech datasets. Then, we show that models trained on these corpora acquire and propagate these biases, such that AAE tweets and tweets by self-identified African Americans are up to two times more likely to be labelled as offensive compared to others. Finally, we propose dialect and race priming as ways to reduce the racial bias in annotation, showing that when annotators are made explicitly aware of an AAE tweet's dialect they are significantly less likely to label the tweet as offensive.
translated by 谷歌翻译
社交媒体平台上的滥用内容的增长增加对在线用户的负面影响。对女同性恋,同性恋者,跨性别或双性恋者的恐惧,不喜欢,不适或不疑虑被定义为同性恋/转铁症。同性恋/翻译语音是一种令人反感的语言,可以总结为针对LGBT +人的仇恨语音,近年来越来越受到兴趣。在线同性恋恐惧症/ Transphobobia是一个严重的社会问题,可以使网上平台与LGBT +人有毒和不受欢迎,同时还试图消除平等,多样性和包容性。我们为在线同性恋和转鸟以及专家标记的数据集提供了新的分类分类,这将允许自动识别出具有同种异体/传递内容的数据集。我们受过教育的注释器并以综合的注释规则向他们提供,因为这是一个敏感的问题,我们以前发现未受训练的众包注释者因文化和其他偏见而诊断倡导性的群体。数据集包含15,141个注释的多语言评论。本文介绍了构建数据集,数据的定性分析和注册间协议的过程。此外,我们为数据集创建基线模型。据我们所知,我们的数据集是第一个已创建的数据集。警告:本文含有明确的同性恋,转基因症,刻板印象的明确陈述,这可能对某些读者令人痛苦。
translated by 谷歌翻译
随着数据驱动的系统越来越大规模部署,对历史上边缘化的群体的不公平和歧视结果引起了道德问题,这些群体在培训数据中的代表性不足。作为回应,围绕AI的公平和包容性的工作呼吁代表各个人口组的数据集。在本文中,我们对可访问性数据集中的年龄,性别和种族和种族的代表性进行了分析 - 数据集 - 来自拥有的数据集,这些数据集来自拥有的人。残疾和老年人 - 这可能在减轻包含AI注入的应用程序的偏见方面发挥重要作用。我们通过审查190个数据集的公开信息来检查由残疾人来源的数据集中的当前表示状态,我们称这些可访问性数据集为止。我们发现可访问性数据集代表不同的年龄,但具有性别和种族表示差距。此外,我们研究了人口统计学变量的敏感和复杂性质如何使分类变得困难和不一致(例如,性别,种族和种族),标记的来源通常未知。通过反思当前代表残疾数据贡献者的挑战和机会,我们希望我们的努力扩大了更多可能将边缘化社区纳入AI注入系统的可能性。
translated by 谷歌翻译
道德框架和情感会影响各种在线和离线行为,包括捐赠,亲环境行动,政治参与,甚至参与暴力抗议活动。自然语言处理中的各种计算方法(NLP)已被用来从文本数据中检测道德情绪,但是为了在此类主观任务中取得更好的性能,需要大量的手工注销训练数据。事实证明,以前对道德情绪注释的语料库已被证明是有价值的,并且在NLP和整个社会科学中都产生了新的见解,但仅限于Twitter。为了促进我们对道德修辞的作用的理解,我们介绍了道德基础Reddit语料库,收集了16,123个reddit评论,这些评论已从12个不同的子雷迪维特策划,由至少三个训练有素的注释者手工注释,用于8种道德情绪(即护理,相称性,平等,纯洁,权威,忠诚,瘦道,隐含/明确的道德)基于更新的道德基础理论(MFT)框架。我们使用一系列方法来为这种新的语料库(例如跨域分类和知识转移)提供基线道德句子分类结果。
translated by 谷歌翻译
A key challenge for automatic hate-speech detection on social media is the separation of hate speech from other instances of offensive language. Lexical detection methods tend to have low precision because they classify all messages containing particular terms as hate speech and previous work using supervised learning has failed to distinguish between the two categories. We used a crowd-sourced hate speech lexicon to collect tweets containing hate speech keywords. We use crowd-sourcing to label a sample of these tweets into three categories: those containing hate speech, only offensive language, and those with neither. We train a multi-class classifier to distinguish between these different categories. Close analysis of the predictions and the errors shows when we can reliably separate hate speech from other offensive language and when this differentiation is more difficult. We find that racist and homophobic tweets are more likely to be classified as hate speech but that sexist tweets are generally classified as offensive. Tweets without explicit hate keywords are also more difficult to classify.
translated by 谷歌翻译
大型语言模型会产生类似人类的文本,这些文本推动了越来越多的应用。但是,最近的文献以及越来越多的现实世界观察表明,这些模型可以产生有毒,有偏见,不真实或其他有害的语言。尽管正在进行评估语言模型危害的工作,但要远见卓识转换出可能出现的危害可能会引起严格的基准。为了促进这种翻译,我们概述了六种表征有害文本的方式,这些方法在设计新基准时值得明确考虑。然后,我们将这些特征用作镜头来识别现有基准中的趋势和差距。最后,我们将它们应用于视角API的案例研究,这是一种毒性分类器,被广泛用于HARS基准。我们的特征提供了一块桥梁,可以在远见和有效评估之间转化。
translated by 谷歌翻译
语言可以用作再现和执行有害刻板印象和偏差的手段,并被分析在许多研究中。在本文中,我们对自然语言处理中的性别偏见进行了304篇论文。我们分析了社会科学中性别及其类别的定义,并将其连接到NLP研究中性别偏见的正式定义。我们调查了在对性别偏见的研究中应用的Lexica和数据集,然后比较和对比方法来检测和减轻性别偏见。我们发现对性别偏见的研究遭受了四个核心限制。 1)大多数研究将性别视为忽视其流动性和连续性的二元变量。 2)大部分工作都在单机设置中进行英语或其他高资源语言进行。 3)尽管在NLP方法中对性别偏见进行了无数的论文,但我们发现大多数新开发的算法都没有测试他们的偏见模型,并无视他们的工作的伦理考虑。 4)最后,在这一研究线上发展的方法基本缺陷涵盖性别偏差的非常有限的定义,缺乏评估基线和管道。我们建议建议克服这些限制作为未来研究的指导。
translated by 谷歌翻译
在本文中,我们讨论了用分层,细粒度标记标记不同类型的侵略和“上下文”的分层的多语言数据集的开发。这里,这里,这里由对话线程定义,其中发生特定的评论以及评论对先前注释执行的话语角色的“类型”。在此处讨论的初始数据集(并作为逗号@图标共享任务的一部分提供),包括四种语言的15,000名注释评论 - Meitei,Bangla,Hindi和印度英语 - 从各种社交媒体平台收集作为Youtube,Facebook,Twitter和电报。正如通常在社交媒体网站上,大量这些评论都是多语种的,主要是与英语混合的代码混合。本文给出了用于注释的标签的详细描述以及开发多标签的过程的过程,该方法可用于标记具有各种侵略和偏差的评论,包括性别偏见,宗教不宽容(称为标签中的公共偏见),类/种姓偏见和民族/种族偏见。我们还定义并讨论已用于标记通过评论执行的异常发挥作用的标记的标签,例如攻击,防御等。我们还对数据集的统计分析以及我们的基线实验的结果进行了发展使用DataSet开发的自动攻击识别系统。
translated by 谷歌翻译
Due to the severity of the social media offensive and hateful comments in Brazil, and the lack of research in Portuguese, this paper provides the first large-scale expert annotated corpus of Brazilian Instagram comments for hate speech and offensive language detection. The HateBR corpus was collected from the comment section of Brazilian politicians' accounts on Instagram and manually annotated by specialists, reaching a high inter-annotator agreement. The corpus consists of 7,000 documents annotated according to three different layers: a binary classification (offensive versus non-offensive comments), offensiveness-level classification (highly, moderately, and slightly offensive), and nine hate speech groups (xenophobia, racism, homophobia, sexism, religious intolerance, partyism, apology for the dictatorship, antisemitism, and fatphobia). We also implemented baseline experiments for offensive language and hate speech detection and compared them with a literature baseline. Results show that the baseline experiments on our corpus outperform the current state-of-the-art for the Portuguese language.
translated by 谷歌翻译
文本分类器以一小中的全解决方案的形式进行规模应用。然而,许多研究表明,分类器对不同的语言和方言有偏见。在测量和发现这些偏见时,会出现一些差距,应解决。首先,``语言,方言和局部内容在地理区域之间是否有所不同吗?'',其次``如果各个区域之间存在差异,它们会影响模型性能吗?''。我们介绍了一个名为Geoolid的新型数据集,其中有15个地理和人口统计学上的城市中有14,000多个示例来解决这些问题。我们对与地理有关的内容进行全面分析及其对进攻语言检测模型的性能差异的影响。总体而言,我们发现当前的模型不会在各个位置概括。同样,我们表明,尽管进攻性语言模型对非裔美国人英语产生误报,但模型表现与每个城市的少数族裔人口比例无关。警告:本文包含令人反感的语言。
translated by 谷歌翻译
*内容警告:此工作显示明确和强烈令人反感的语言的示例。 Covid-19大流行引起了抗亚洲仇外心理和偏见的激增。许多人已经向社交媒体表达了这些负面情绪,需要开发可靠的系统来检测仇恨言论,往往是代表性的人口统计。在本文中,我们使用2种实验方法创建和注释推特推文的语料库,以探讨较好的粒度的反亚洲滥用和仇恨言论。使用具有较少偏置注释的数据集,我们部署多种模型,并检查其他相关的语料库的适用性来完成这些多任务分类。除了展示有希望的结果外,我们的实验还提供了对文化和后勤因素的差别,以了解不同人口统计学的讨厌讲话。我们的分析旨在促进对仇恨语音检测领域的理解,特别是对低资源群体。
translated by 谷歌翻译
对仇恨言论和冒犯性语言(HOF)的认可通常是作为一项分类任务,以决定文本是否包含HOF。我们研究HOF检测是否可以通过考虑HOF和类似概念之间的关系来获利:(a)HOF与情感分析有关,因为仇恨言论通常是负面陈述并表达了负面意见; (b)这与情绪分析有关,因为表达的仇恨指向作者经历(或假装体验)愤怒的同时经历(或旨在体验)恐惧。 (c)最后,HOF的一个构成要素是提及目标人或群体。在此基础上,我们假设HOF检测在与这些概念共同建模时,在多任务学习设置中进行了改进。我们将实验基于这些概念的现有数据集(情感,情感,HOF的目标),并在Hasoc Fire 2021英语子任务1A中评估我们的模型作为参与者(作为IMS-Sinai团队)。基于模型选择实验,我们考虑了多个可用的资源和共享任务的提交,我们发现人群情绪语料库,Semeval 2016年情感语料库和犯罪2019年目标检测数据的组合导致F1 =。 79在基于BERT的多任务多任务学习模型中,与Plain Bert的.7895相比。在HASOC 2019测试数据上,该结果更为巨大,而F1中的增加2pp和召回大幅增加。在两个数据集(2019,2021)中,HOF类的召回量尤其增加(2019年数据的6pp和2021数据的3pp),表明MTL具有情感,情感和目标识别是适合的方法可能部署在社交媒体平台中的预警系统。
translated by 谷歌翻译
贬值表达的使用可以是良性或积极赋予能力的。当滥用检测模型将这些表达式错误分类为贬义时,它们无意中审查了边缘化群体进行的生产性对话。参与非主导观点的一种方法是添加围绕对话的上下文。先前的研究利用了用户和线程级别的功能,但它经常忽略了发生生产性对话的空间。我们的论文强调了社区环境如何改善滥用语言检测的分类结果。我们为此做出了两个主要贡献。首先,我们证明,在线社区以他们对虐待受害者的支持的性质聚集。其次,我们确定社区环境如何提高准确性并降低最先进的滥用语言分类器的假阳性率。这些发现暗示了在滥用语言研究中的上下文感知模型的有希望的方向。
translated by 谷歌翻译
仇恨言语检测模型通常在持有的测试集上评估。但是,这有可能因为仇恨言语数据集中越来越有据可查的系统差距和偏见,因此绘制模型性能的不完整且潜在的误导性图片。为了实现更多针对性的诊断见解,最近的研究引入了仇恨言语检测模型的功能测试。但是,这些测试目前仅针对英语内容,这意味着它们无法支持全球数十亿语言所说的其他语言中更有效模型的开发。为了帮助解决这个问题,我们介绍了多语言Hatecheck(MHC),这是一套用于多语言仇恨言语检测模型的功能测试。 MHC涵盖了跨十种语言的34个功能,这比任何其他仇恨语音数据集更多。为了说明MHC的效用,我们训练和测试了高性能的多语言仇恨语音检测模型,并揭示了单语和跨语性应用的关键模型弱点。
translated by 谷歌翻译