我们旨在了解行动的执行方式并确定微妙的差异,例如“折叠”“轻轻折叠”。为此,我们提出了一种识别跨不同动作的副词的方法。但是,这种细粒度的注释难以获得,其长尾巴性质使得在罕见的动作倡导者组成中识别副词是具有挑战性的。因此,我们的方法使用多副词伪标签使用半监督的学习来利用仅使用动作标签的视频。结合这些伪宇宙的自适应阈值,我们能够有效利用可用的数据,同时解决长尾分布。此外,我们收集了三个现有视频检索数据集的副词注释,这使我们能够介绍在看不见的动作adverb组成和看不见的域中识别副词的新任务。实验证明了我们的方法的有效性,该方法的表现优于识别副词和适合副词识别的半监督作品的先前工作。我们还展示了副词如何关联细粒度的动作。
translated by 谷歌翻译
由于数据注释的高成本,半监督行动识别是一个具有挑战性的,但重要的任务是。这个问题的常见方法是用伪标签分配未标记的数据,然后将其作为训练中的额外监督。通常在最近的工作中,通过在标记数据上训练模型来获得伪标签,然后使用模型的自信预测来教授自己。在这项工作中,我们提出了一种更有效的伪标签方案,称为跨模型伪标记(CMPL)。具体地,除了主要骨干内,我们还介绍轻量级辅助网络,并要求他们互相预测伪标签。我们观察到,由于其不同的结构偏差,这两种模型倾向于学习来自同一视频剪辑的互补表示。因此,通过利用跨模型预测作为监督,每个模型都可以受益于其对应物。对不同数据分区协议的实验表明我们对现有替代方案框架的重大改进。例如,CMPL在Kinetics-400和UCF-101上实现了17.6 \%$ 17.6 \%$ 25.1 \%$ 25.使用RGB模态和1 \%$标签数据,优于我们的基线模型,FIXMATCT,以$ 9.0 \% $和10.3美元\%$。
translated by 谷歌翻译
The remarkable success of deep learning in various domains relies on the availability of large-scale annotated datasets. However, obtaining annotations is expensive and requires great effort, which is especially challenging for videos. Moreover, the use of human-generated annotations leads to models with biased learning and poor domain generalization and robustness. As an alternative, self-supervised learning provides a way for representation learning which does not require annotations and has shown promise in both image and video domains. Different from the image domain, learning video representations are more challenging due to the temporal dimension, bringing in motion and other environmental dynamics. This also provides opportunities for video-exclusive ideas that advance self-supervised learning in the video and multimodal domain. In this survey, we provide a review of existing approaches on self-supervised learning focusing on the video domain. We summarize these methods into four different categories based on their learning objectives: 1) pretext tasks, 2) generative learning, 3) contrastive learning, and 4) cross-modal agreement. We further introduce the commonly used datasets, downstream evaluation tasks, insights into the limitations of existing works, and the potential future directions in this area.
translated by 谷歌翻译
We introduce LaViLa, a new approach to learning video-language representations by leveraging Large Language Models (LLMs). We repurpose pre-trained LLMs to be conditioned on visual input, and finetune them to create automatic video narrators. Our auto-generated narrations offer a number of advantages, including dense coverage of long videos, better temporal synchronization of the visual information and text, and much higher diversity of text. The video-text embedding learned contrastively with these additional auto-generated narrations outperforms the previous state-of-the-art on multiple first-person and third-person video tasks, both in zero-shot and finetuned setups. Most notably, LaViLa obtains an absolute gain of 10.1% on EGTEA classification and 5.9% Epic-Kitchens-100 multi-instance retrieval benchmarks. Furthermore, LaViLa trained with only half the narrations from the Ego4D dataset outperforms baseline models trained on the full set, and shows positive scaling behavior on increasing pre-training data and model size.
translated by 谷歌翻译
半监控视频动作识别倾向于使深神经网络能够实现显着性能,即使具有非常有限的标记数据。然而,现有方法主要从当前的基于图像的方法转移(例如,FixMatch)。不具体利用时间动态和固有的多模式属性,它们的结果可能是次优。为了更好地利用视频中的编码的时间信息,我们将时间梯度引入了本文中的更多细小特征提取的额外模态。具体而言,我们的方法明确地蒸馏从时间梯度(TG)的细粒度运动表示,并施加不同方式的一致性(即RGB和TG)。在推理期间,没有额外的计算或参数,在没有额外的计算或参数的情况下显着提高了半监督动作识别的性能。我们的方法在若干典型的半监督设置(即标记数据的不同比率)下实现三个视频动作识别基准(即动态-400,UCF-101和HMDB-51)的最先进的性能。
translated by 谷歌翻译
自我监督的方法已通过端到端监督学习的图像分类显着缩小了差距。但是,在人类动作视频的情况下,外观和运动都是变化的重要因素,因此该差距仍然很大。这样做的关键原因之一是,采样对类似的视频剪辑,这是许多自我监督的对比学习方法所需的步骤,目前是保守的,以避免误报。一个典型的假设是,类似剪辑仅在单个视频中暂时关闭,从而导致运动相似性的示例不足。为了减轻这种情况,我们提出了SLIC,这是一种基于聚类的自我监督的对比度学习方法,用于人类动作视频。我们的关键贡献是,我们通过使用迭代聚类来分组类似的视频实例来改善传统的视频内积极采样。这使我们的方法能够利用集群分配中的伪标签来取样更艰难的阳性和负面因素。在UCF101上,SLIC的表现优于最先进的视频检索基线 +15.4%,而直接转移到HMDB51时,SLIC检索基线的率高为15.4%, +5.7%。通过用于动作分类的端到端登录,SLIC在UCF101上获得了83.2%的TOP-1准确性(+0.8%),而HMDB51(+1.6%)上的fric fineTuns in top-1 finetuning。在动力学预处理后,SLIC还与最先进的行动分类竞争。
translated by 谷歌翻译
区分动作是按预期执行的,还是预期的动作失败是人类不仅具有的重要技能,而且对于在人类环境中运行的智能系统也很重要。但是,由于缺乏带注释的数据,认识到一项行动是无意的还是预期的,是否会失败。尽管可以在互联网中发现无意或失败动作的视频,但高注释成本是学习网络的主要瓶颈。因此,在这项工作中,我们研究了对无意采取行动预测的自学代表学习的问题。虽然先前的作品学习基于本地时间社区的表示形式,但我们表明需要视频的全局上下文来学习三个下游任务的良好表示:无意的动作分类,本地化和预期。在补充材料中,我们表明学习的表示形式也可用于检测视频中的异常情况。
translated by 谷歌翻译
Learning text-video embeddings usually requires a dataset of video clips with manually provided captions. However, such datasets are expensive and time consuming to create and therefore difficult to obtain on a large scale. In this work, we propose instead to learn such embeddings from video data with readily available natural language annotations in the form of automatically transcribed narrations. The contributions of this work are three-fold. First, we introduce HowTo100M: a large-scale dataset of 136 million video clips sourced from 1.22M narrated instructional web videos depicting humans performing and describing over 23k different visual tasks. Our data collection procedure is fast, scalable and does not require any additional manual annotation. Second, we demonstrate that a text-video embedding trained on this data leads to state-ofthe-art results for text-to-video retrieval and action localization on instructional video datasets such as YouCook2 or CrossTask. Finally, we show that this embedding transfers well to other domains: fine-tuning on generic Youtube videos (MSR-VTT dataset) and movies (LSMDC dataset) outperforms models trained on these datasets alone. Our dataset, code and models are publicly available [1]. * Equal contribution.
translated by 谷歌翻译
Timeyou have a little pressure you are cutting the wood readjusting the table saw I am using a roller sure you applied glue Figure 1: We describe an efficient approach to learn visual representations from misaligned and noisy narrations (bottom) automatically extracted from instructional videos (top). Our video representations are learnt from scratch without relying on any manually annotated visual dataset yet outperform all self-supervised and many fully-supervised methods on several video recognition benchmarks.
translated by 谷歌翻译
我们提出了MACLR,这是一种新颖的方法,可显式执行从视觉和运动方式中学习的跨模式自我监督的视频表示。与以前的视频表示学习方法相比,主要关注学习运动线索的研究方法是隐含的RGB输入,MACLR丰富了RGB视频片段的标准对比度学习目标,具有运动途径和视觉途径之间的跨模式学习目标。我们表明,使用我们的MACLR方法学到的表示形式更多地关注前景运动区域,因此可以更好地推广到下游任务。为了证明这一点,我们在五个数据集上评估了MACLR,以进行动作识别和动作检测,并在所有数据集上展示最先进的自我监督性能。此外,我们表明MACLR表示可以像在UCF101和HMDB51行动识别的全面监督下所学的表示一样有效,甚至超过了对Vidsitu和SSV2的行动识别的监督表示,以及对AVA的动作检测。
translated by 谷歌翻译
动作理解已经演变成精细粒度的时代,因为现实生活中的大多数人类行为只有很小的差异。为了以标签有效的方式准确检测这些细粒度的动作,我们首次解决了视频中弱监督的细粒度临时动作检测问题。如果没有仔细的设计来捕获细粒度的动作之间的细微差异,先前的一般动作检测模型在细粒度的环境中不能很好地表现。我们建议将动作建模为可重复使用的原子动作的组合,这些动作是通过自我监督聚类自动从数据中自动发现的,以捕获细颗粒动作的共同点和个性。以视觉概念为代表的学识渊博的原子动作进一步映射到利用语义标签层次结构的细细作用标签。我们的方法构建了四个级别的视觉表示层次结构:剪辑级别,原子动作级别,精细动作类别和粗糙的动作类别水平,并在每个级别进行监督。对两个大规模细颗粒视频数据集(Fineaction和FineGym)进行了广泛的实验,显示了我们提出的弱监督模型的好处,以实现细粒度的动作检测,并实现了最先进的结果。
translated by 谷歌翻译
最近的动作识别模型通过整合对象,其位置和互动来取得令人印象深刻的结果。但是,为每个框架获得密集的结构化注释是乏味且耗时的,使这些方法的训练昂贵且可扩展性较低。同时,如果可以在感兴趣的域内或之外使用一小部分带注释的图像,我们如何将它们用于下游任务的视频?我们提出了一个学习框架的结构(简称SVIT),该结构证明了仅在训练过程中仅可用的少量图像的结构才能改善视频模型。 SVIT依靠两个关键见解。首先,由于图像和视频都包含结构化信息,因此我们用一组\ emph {对象令牌}丰富了一个可以在图像和视频中使用的\ emph {对象令牌}的模型。其次,视频中各个帧的场景表示应与静止图像的场景表示“对齐”。这是通过\ emph {frame-clip一致性}损失来实现的,该损失可确保图像和视频之间结构化信息的流动。我们探索场景结构的特定实例化,即\ emph {手对象图},由手和对象组成,其位置为节点,以及触点/no-contact的物理关系作为边缘。 SVIT在多个视频理解任务和数据集上显示出强烈的性能改进;它在EGO4D CVPR'22对象状态本地化挑战中赢得了第一名。对于代码和预算模型,请访问\ url {https://eladb3.github.io/svit/}的项目页面
translated by 谷歌翻译
尽管视频自我监督的学习模型最近取得了成功,但关于它们的概括能力仍然有很多了解。在本文中,我们研究了敏感的视频自我监督学习对当前常规基准的方式以及方法是否超出规范评估设置的概括。我们在敏感性的四个不同因素上做到这一点:域,样本,动作和任务。我们的研究包括7个视频数据集,9种自学方法和6种视频理解任务的500多个实验,揭示了视频自我监督学习中的当前基准测试不是沿这些敏感性因素的概括指标。此外,我们发现自我监督的方法在香草的监督前训练后落后,尤其是当域移动较大并且可用下游样品的量很低时。从我们的分析中,我们将严重的基准测试(实验的一个子集)提炼出来,并讨论其对评估现有和未来自我监督视频学习方法获得的表示的普遍性的意义。
translated by 谷歌翻译
我们解决了视频动作识别的数据增强问题。视频中的标准增强策略是手工设计的,并随机对可能的增强数据点的空间进行采样,而不知道哪个增强点会更好,或者是通过启发式方法会更好。我们建议学习是什么使良好的视频供行动识别,并仅选择高质量的样本进行增强。特别是,我们选择前景和背景视频的视频合成作为数据增强过程,从而导致各种新样本。我们了解了哪对视频要增加,而无需实际综合它们。这降低了可能的增强空间,这具有两个优势:它节省了计算成本并提高了最终训练的分类器的准确性,因为增强对的质量高于平均水平。我们在整个训练环境中介绍了实验结果:几乎没有射击,半监督和完全监督。我们观察到所有这些都对动力学,UCF101,HMDB51的基准进行了一致的改进,并在设置上实现了有限数据的新最新设置。在半监督环境中,我们看到高达8.6%的改善。
translated by 谷歌翻译
自动手术活动识别可以实现更智能的手术设备和更有效的工作流程。这种技术在新手术室中的整合有可能改善对患者的护理服务并降低成本。最近的作品在手术活动识别方面取得了有希望的表现。但是,这些模型缺乏普遍性是该技术广泛采用的关键障碍之一。在这项工作中,我们研究了手术室跨手术活动识别模型的普遍性。我们提出了一种新的域适应方法,以在新手术室中提高手术活动识别模型的性能,而我们只有未标记的视频。我们的方法生成了伪标签,用于对其有信心的未标记视频剪辑,并在剪辑的增强版本上训练该模型。我们将方法扩展到半监督域的适应设置,其中还标记了目标域的一小部分。在我们的实验中,我们提出的方法始终优于从两个手术室收集的480多个长手术视频的数据集上的基准。
translated by 谷歌翻译
深度学习模型已在大规模视频基准测试上取得了出色的识别结果。但是,当应用于稀有场景或物体的视频时,它们的性能很差,这主要是由于现有视频数据集的偏见。我们从两个不同的角度解决了这个问题:算法和数据集。从算法的角度来看,我们提出了空间感知的多种偏见(SMAD),它既将明确的偏见都与多种相对的对抗性训练和隐含的偏见以及与空间行动重新重量的模块相结合,从行动方面。为了消除内在的数据集偏差,我们建议OmnideBias有选择地利用Web数据进行联合培训,这可以通过更少的Web数据实现更高的性能。为了验证有效性,我们建立评估协议并对现有数据集的重新分配分配和新的评估数据集进行广泛的实验,该数据集的重点是稀有场景。我们还表明,当转移到其他数据集和任务时,辩护形式可以更好地概括。
translated by 谷歌翻译
在本文中,我们考虑了从长时间的视频到几分钟的长视频进行分类的问题(例如,烹饪不同的食谱,烹饪不同的食谱,进行不同的家庭装修,创建各种形式的艺术和手工艺品)。准确地对这些活动进行分类,不仅需要识别构成任务的单个步骤,还需要捕获其时间依赖性。这个问题与传统的动作分类大不相同,在传统的动作分类中,模型通常在跨越几秒钟的视频上进行了优化,并且手动修剪以包含简单的原子动作。虽然步骤注释可以使模型的培训能够识别程序活动的各个步骤,但由于长时间视频中手动注释时间界的超级注释,因此该领域的现有大规模数据集不包括此类段标签。为了解决这个问题,我们建议通过利用文本知识库(Wikihow)的遥远监督来自动确定教学视频中的步骤,其中包括对执行各种复杂活动所需的步骤的详细描述。我们的方法使用语言模型来匹配视频中自动转录的语音,以在知识库中逐步描述。我们证明,经过训练的视频模型可以识别这些自动标记的步骤(无手动监督)产生了在四个下游任务上实现卓越的概括性能的表示:识别程序活动,步骤分类,步骤预测和以自我为中心的视频分类。
translated by 谷歌翻译
视频中的战斗检测是当今监视系统和流媒体的流行率的新兴深度学习应用程序。以前的工作主要依靠行动识别技术来解决这个问题。在本文中,我们提出了一种简单但有效的方法,该方法从新的角度解决了任务:我们将战斗检测模型设计为动作感知功能提取器和异常得分生成器的组成。另外,考虑到视频收集帧级标签太费力了,我们设计了一个弱监督的两阶段训练计划,在此我们使用在视频级别标签上计算出的多个实体学习损失来培训得分生成器,并采用自我训练的技术以进一步提高其性能。在公开可用的大规模数据集(UBI-Fights)上进行了广泛的实验,证明了我们方法的有效性,并且数据集的性能超过了几种先前的最先进的方法。此外,我们收集了一个新的数据集VFD-2000,该数据集专门研究视频战斗检测,比现有数据集更大,场景更大。我们的方法的实现和拟议的数据集将在https://github.com/hepta-col/videofightdetection上公开获得。
translated by 谷歌翻译
Previous work on action representation learning focused on global representations for short video clips. In contrast, many practical applications, such as video alignment, strongly demand learning the intensive representation of long videos. In this paper, we introduce a new framework of contrastive action representation learning (CARL) to learn frame-wise action representation in a self-supervised or weakly-supervised manner, especially for long videos. Specifically, we introduce a simple but effective video encoder that considers both spatial and temporal context by combining convolution and transformer. Inspired by the recent massive progress in self-supervised learning, we propose a new sequence contrast loss (SCL) applied to two related views obtained by expanding a series of spatio-temporal data in two versions. One is the self-supervised version that optimizes embedding space by minimizing KL-divergence between sequence similarity of two augmented views and prior Gaussian distribution of timestamp distance. The other is the weakly-supervised version that builds more sample pairs among videos using video-level labels by dynamic time wrapping (DTW). Experiments on FineGym, PennAction, and Pouring datasets show that our method outperforms previous state-of-the-art by a large margin for downstream fine-grained action classification and even faster inference. Surprisingly, although without training on paired videos like in previous works, our self-supervised version also shows outstanding performance in video alignment and fine-grained frame retrieval tasks.
translated by 谷歌翻译
最近,自我监督的表示学习(SSRL)在计算机视觉,语音,自然语言处理(NLP)以及最近的其他类型的模式(包括传感器的时间序列)中引起了很多关注。自我监督学习的普及是由传统模型通常需要大量通知数据进行培训的事实所驱动的。获取带注释的数据可能是一个困难且昂贵的过程。已经引入了自我监督的方法,以通过使用从原始数据自由获得的监督信号对模型进行判别预训练来提高训练数据的效率。与现有的对SSRL的评论不同,该评论旨在以单一模式为重点介绍CV或NLP领域的方法,我们旨在为时间数据提供对多模式自我监督学习方法的首次全面审查。为此,我们1)提供现有SSRL方法的全面分类,2)通过定义SSRL框架的关键组件来引入通用管道,3)根据其目标功能,网络架构和潜在应用程序,潜在的应用程序,潜在的应用程序,比较现有模型, 4)查看每个类别和各种方式中的现有多模式技术。最后,我们提出了现有的弱点和未来的机会。我们认为,我们的工作对使用多模式和/或时间数据的域中SSRL的要求有了一个观点
translated by 谷歌翻译