本文表明,球形卷积神经网络(S-CNN)在估算从扩散MRI(DMRI)的组织微结构的标量参数时,比常规完全连接的网络(FCN)具有不同的优势。这样的微观结构参数对于识别病理学和量化其程度很有价值。但是,当前的临床实践通常获取仅由6个扩散加权图像(DWI)组成的DMRI数据,从而限制了估计的微观结构指数的准确性和精度。已经提出了机器学习(ML)来应对这一挑战。但是,现有的基于ML的方法对于不同的DMRI梯度采样方案并不强大,它们也不是旋转等效的。对抽样方案缺乏鲁棒性需要为每个方案培训一个新的网络,从而使来自多个来源的数据分析变得复杂。缺乏旋转模棱两可的可能结果是,训练数据集必须包含各种微叠加方向。在这里,我们显示球形CNN代表了一种引人注目的替代方案,该替代方案对新的采样方案以及提供旋转模棱两可。我们表明可以利用后者以减少所需的训练数据点的数量。
translated by 谷歌翻译
非常希望知道模型的预测是多么不确定,特别是对于复杂的模型和难以理解的模型,如深度学习。虽然在扩散加权MRI中使用深度学习方法,但事先作品没有解决模型不确定性的问题。在这里,我们提出了一种深入的学习方法来估计扩散张量并计算估计不确定性。数据相关的不确定性由网络直接计算,并通过损耗衰减学习。使用Monte Carlo辍学来计算模型不确定性。我们还提出了一种评估预测不确定性的质量的新方法。我们将新方法与标准最小二乘张量估计和基于引导的不确定性计算技术进行比较。我们的实验表明,当测量数量小时,深度学习方法更准确,并且其不确定性预测比标准方法更好地校准。我们表明,新方法计算的估计不确定性可以突出显示模型的偏置,检测域移位,并反映测量中的噪声强度。我们的研究表明了基于深度学习的扩散MRI分析中建模预测不确定性的重要性和实际价值。
translated by 谷歌翻译
Deep learning (DL) is gaining popularity as a parameter estimation method for quantitative MRI. A range of competing implementations have been proposed, relying on either supervised or self-supervised learning. Self-supervised approaches, sometimes referred to as unsupervised, have been loosely based on auto-encoders, whereas supervised methods have, to date, been trained on groundtruth labels. These two learning paradigms have been shown to have distinct strengths. Notably, self-supervised approaches have offered lower-bias parameter estimates than their supervised alternatives. This result is counterintuitive - incorporating prior knowledge with supervised labels should, in theory, lead to improved accuracy. In this work, we show that this apparent limitation of supervised approaches stems from the naive choice of groundtruth training labels. By training on labels which are deliberately not groundtruth, we show that the low-bias parameter estimation previously associated with self-supervised methods can be replicated - and improved on - within a supervised learning framework. This approach sets the stage for a single, unifying, deep learning parameter estimation framework, based on supervised learning, where trade-offs between bias and variance are made by careful adjustment of training label.
translated by 谷歌翻译
敏感性张量成像(STI)是一种新兴的磁共振成像技术,它以二阶张量模型来表征各向异性组织磁敏感性。 STI有可能为白质纤维途径的重建以及在MM分辨率下的大脑中的髓磷脂变化的检测提供信息,这对于理解健康和患病大脑的大脑结构和功能具有很大的价值。但是,STI在体内的应用受到了繁琐且耗时的采集要求,以测量易感性引起的MR相变为多个(通常超过六个)的头部方向。由于头圈的物理限制,头部旋转角的限制增强了这种复杂性。结果,STI尚未广泛应用于体内研究。在这项工作中,我们通过为STI的图像重建算法提出利用数据驱动的先验来解决这些问题。我们的方法称为DEEPSTI,通过深层神经网络隐式地了解了数据,该网络近似于STI的正常器函数的近端操作员。然后,使用学习的近端网络对偶极反转问题进行迭代解决。使用模拟和体内人类数据的实验结果表明,根据重建张量图,主要特征向量图和拖拉术结果,对最先进的算法的改进很大六个不同的方向。值得注意的是,我们的方法仅在人体内的一个方向上实现了有希望的重建结果,我们证明了该技术在估计多发性硬化症患者中估计病变易感性各向异性的潜在应用。
translated by 谷歌翻译
扩散加权图像(DWIS)中的噪声降低了扩散张量磁共振成像(DTI)导出的微结构参数的准确性和精度,并导致延长的采集时间来实现改进的信噪比(SNR)。基于深度学习的图像去噪使用卷积神经网络(CNNS)具有卓越的性能,但通常需要额外的高SNR数据来监督CNN的培训,这降低了实际可行性。我们开发了一个自我监督的深度学习的方法,标题为“SDNDTI”,用于去噪DTI数据,这不需要额外的高SNR数据进行培训。具体地,SDNDTI将多向DTI数据划分为许多子集,每个子​​集中沿着沿着最佳选择的扩散编码方向组成的六个DWI卷,该编码方向是对张力配件的稳健,然后沿着拟合的扩散张量沿所有获取的方向合成DWI体积使用数据的每个子集作为CNN的输入数据。另一方面,SDNDTI沿着使用所有获取的数据作为训练目标的扩散张量,沿着获取的扩散编码方向合成DWI卷。 SDNDTI使用深3维CNN从合成的DWI卷中的每个子集中消除噪声,以匹配清洁器目标DWI卷的质量,通过平均所有去噪数据的所有子集实现更高的SNR。 SDNDTI的去噪功效在于人类连接项目(HCP)提供的两种数据集和衰老中的寿命HCP。 SDNDTI结果保留了图像清晰度和纹理细节,并大大改善了原始数据的影响。 SDNDTI的结果与来自最先进的传统去噪算法包括BM4D,AONLM和MPPCA的常规去噪算法的结果相当。
translated by 谷歌翻译
扩散张量心脏磁共振(DT-CMR)使我们能够探测体内心肌内心肌细胞的微观结构排列,这是不可侵袭性的,这是其他成像方式不允许的。这种创新的技术可以彻底改变执行心脏临床诊断,风险分层,预后和治疗随访的能力。但是,DT-CMR目前效率低下,获得单个2D静态图像所需的六分钟以上。因此,DT-CMR目前仅限于研究,但在临床上不使用。我们建议减少生产DT-CMR数据集并随后将其降低所需的重复次数,从而减少通过线性因子的采集时间,同时保持可接受的图像质量。我们提出的基于生成的对抗网络,视觉变压器和合奏学习的方法比以前提出的方法表现出色,而且要好得多,从而使单一的呼吸息dt-CMR更接近现实。
translated by 谷歌翻译
对脑灰质细胞结构的有效表征具有定量敏感性对SOMA密度和体积的敏感性仍然是扩散MRI(DMRI)中的未解决的攻击。解决与细胞建筑特征的DMRI信号相关的问题呼吁通过少数生理相关参数和用于反相模型的算法来定义描述脑组织的数学模型。为了解决这个问题,我们提出了一个新的前向模型,特别是一个新的方程式系统,需要几个相对稀疏的B-shell。然后,我们从贝叶斯分析中应用现代工具,称为无似然推论(LFI)来颠覆我们所提出的模型。与文献中的其他方法相比,我们的算法不仅产生了最能描述给定的观察数据点$ x_0 $的参数向量$ \ theta $的估计,而且还产生了全面的后分发$ p(\ theta | x_0)超过参数空间。这使得模型反演的描述能够更丰富地描述,提供估计参数的可信间隔的指示符以及模型可能呈现不确定性的参数区域的完整表征。我们近似使用深神经密度估计器的后部分布,称为标准化流,并使用来自前向模型的一组重复模拟来拟合它们。我们使用DMIPY验证我们的模拟方法,然后在两个公共可用数据集上应用整个管道。
translated by 谷歌翻译
This paper presents a subsampling-task paradigm for data-driven task-specific experiment design (ED) and a novel method in populationwide supervised feature selection (FS). Optimal ED, the choice of sampling points under constraints of limited acquisition-time, arises in a wide variety of scientific and engineering contexts. However the continuous optimization used in classical approaches depend on a-priori parameter choices and challenging non-convex optimization landscapes. This paper proposes to replace this strategy with a subsampling-task paradigm, analogous to populationwide supervised FS. In particular, we introduce JOFSTO, which performs JOint Feature Selection and Task Optimization. JOFSTO jointly optimizes two coupled networks: one for feature scoring, which provides the ED, the other for execution of a downstream task or process. Unlike most FS problems, e.g. selecting protein expressions for classification, ED problems typically select from highly correlated globally informative candidates rather than seeking a small number of highly informative features among many uninformative features. JOFSTO's construction efficiently identifies potentially correlated, but effective subsets and returns a trained task network. We demonstrate the approach using parameter estimation and mapping problems in clinically-relevant applications in quantitative MRI and in hyperspectral imaging. Results from simulations and empirical data show the subsampling-task paradigm strongly outperforms classical ED, and within our paradigm, JOFSTO outperforms state-of-the-art supervised FS techniques. JOFSTO extends immediately to wider image-based ED problems and other scenarios where the design must be specified globally across large numbers of acquisitions. Code will be released.
translated by 谷歌翻译
Atrial Fibrillation (AF) is characterized by disorganised electrical activity in the atria and is known to be sustained by the presence of regions of fibrosis (scars) or functional cellular remodeling, both of which may lead to areas of slow conduction. Estimating the effective conductivity of the myocardium and identifying regions of abnormal propagation is therefore crucial for the effective treatment of AF. We hypothesise that the spatial distribution of tissue conductivity can be directly inferred from an array of concurrently acquired contact electrograms (EGMs). We generate a dataset of simulated cardiac AP propagation using randomised scar distributions and a phenomenological cardiac model and calculate contact electrograms at various positions on the field. A deep neural network, based on a modified U-net architecture, is trained to estimate the location of the scar and quantify conductivity of the tissue with a Jaccard index of $91$%. We adapt a wavelet-based surrogate testing analysis to confirm that the inferred conductivity distribution is an accurate representation of the ground truth input to the model. We find that the root mean square error (RMSE) between the ground truth and our predictions is significantly smaller ($p_{val}=0.007$) than the RMSE between the ground truth and surrogate samples.
translated by 谷歌翻译
我们提出了Fibernet,一种估计\ emph {in-Vivo}的方法,从电动激活的多个导管记录中,人心房的心脏纤维结构。心脏纤维在心脏的电力功能中起着核心作用,但是它们很难确定体内,因此在现有心脏模型中很少有特定于患者的特定于患者。 Fibernet通过解决物理知识的神经网络的逆问题来学习纤维布置。逆问题等于从一组稀疏激活图中识别心脏传播模型的传导速度张量。多个地图的使用可以同时识别传导速度张量(包括局部纤维角)的所有组件。我们对合成2-D和3-D示例,扩散张量纤维和患者特异性病例进行广泛测试。我们表明,在存在噪声的情况下,也足以准确捕获纤维。随着地图的较少,正则化的作用变得突出。此外,我们表明拟合的模型可以稳健地重现看不见的激活图。我们设想,纤维网将帮助创建特定于患者的个性化医学模型。完整代码可在http://github.com/fsahli/fibernet上找到。
translated by 谷歌翻译
从磁共振成像(MRI)数据(称为颅骨条状)中去除非脑信号是许多神经图像分析流的组成部分。尽管它们很丰富,但通常是针对具有特定采集特性的图像量身定制的,即近乎各向异性的分辨率和T1加权(T1W)MRI对比度,这些分辨率在研究环境中很普遍。结果,现有的工具倾向于适应其他图像类型,例如在诊所常见的快速旋转回声(FSE)MRI中获得的厚切片。尽管近年来基于学习的大脑提取方法已获得吸引力,但这些方法面临着类似的负担,因为它们仅对训练过程中看到的图像类型有效。为了在成像协议的景观中实现强大的颅骨缠身,我们引入了Synthstrip,这是一种快速,基于学习的脑萃取工具。通过利用解剖学分割来生成具有解剖学,强度分布和远远超过现实医学图像范围的完全合成训练数据集,Synthstrip学会了成功推广到各种真实获得的大脑图像,从而消除了使用训练数据的需求目标对比。我们证明了合成条的功效对受试者人群的各种图像采集和决议的功效,从新生儿到成人。我们显示出与流行的颅骨基线的准确性的实质性提高 - 所有这些基线都采用单个训练有素的模型。我们的方法和标记的评估数据可在https://w3id.org/synthstrip上获得。
translated by 谷歌翻译
物理驱动的深度学习方法已成为计算磁共振成像(MRI)问题的强大工具,将重建性能推向新限制。本文概述了将物理信息纳入基于学习的MRI重建中的最新发展。我们考虑了用于计算MRI的线性和非线性正向模型的逆问题,并回顾了解决这些方法的经典方法。然后,我们专注于物理驱动的深度学习方法,涵盖了物理驱动的损失功能,插件方法,生成模型和展开的网络。我们重点介绍了特定于领域的挑战,例如神经网络的实现和复杂值的构建基块,以及具有线性和非线性正向模型的MRI转换应用。最后,我们讨论常见问题和开放挑战,并与物理驱动的学习与医学成像管道中的其他下游任务相结合时,与物理驱动的学习的重要性联系在一起。
translated by 谷歌翻译
目的:开发一种适用于具有非平滑相位变化的扩散加权(DW)图像的鲁棒部分傅里叶(PF)重建算法。方法:基于展开的近端分裂算法,导出了一种神经网络架构,其在经常复卷卷积实现的数据一致性操作和正则化之间交替。为了利用相关性,在考虑到置换方面,共同重建相同切片的多重重复。该算法在60名志愿者的DW肝脏数据上培训,并回顾性和预期的不同解剖和分辨率的次样本数据评估。结果:该方法能够在定量措施以及感知图像质量方面具有显着优异地优于追溯子采样数据的传统PF技术。在这种情况下,发现重复的联合重建以及特定类型的经常性网络展开展开是有益的重建质量。在预期的PF采样数据上,所提出的方法使得DW成像能够在不牺牲图像分辨率或引入额外的伪影的情况下进行DW成像。或者,它可以用来对抗具有更高分辨率的获取的TE增加。此外,可以向展示训练集中的解剖学和对比度显示普遍性的脑数据。结论:这项工作表明,即使在易于相位变化的解剖中的强力PF因子中,DW数据的强大PF重建也是可行的。由于所提出的方法不依赖于阶段的平滑度前沿,而是使用学习的经常性卷积,因此可以避免传统PF方法的伪像。
translated by 谷歌翻译
Estimation of the T2 distribution from multi-echo T2-Weighted MRI (T2W) data can provide insight into the microscopic content of tissue using macroscopic imaging. This information can be used as a biomarker for several pathologies, such as tumor characterization, osteoarthritis, and neurodegenerative diseases. Recently, deep neural network (DNN) based methods were proposed for T2 distribution estimation from MRI data. However, these methods are highly sensitive to distribution shifts such as variations in the echo-times (TE) used during acquisition. Therefore, DNN-based methods cannot be utilized in large-scale multi-institutional trials with heterogeneous acquisition protocols. We present P2T2, a new physically-primed DNN approach for T2 distribution estimation that is robust to different acquisition parameters while maintaining state-of-the-art estimation accuracy. Our P2T2 model encodes the forward model of the signal decay by taking as input the TE acquisition array, in addition to the MRI signal, and provides an estimate of the corresponding T2 distribution as its output. Our P2T2 model has improved the robustness against distribution shifts in the acquisition process by more than 50% compared to the previously proposed DNN model. When tested without any distribution shifts, our model achieved about the same accuracy. Finally, when applied to real human MRI data, our P2T2 model produced the most detailed Myelin-Water fraction maps compared to both the MIML model and classical approaches. Our proposed physically-primed approach improved the generalization capacity of DNN models for T2 distribution estimation and their robustness against distribution shifts compared to previous approaches without compromising the accuracy.
translated by 谷歌翻译
Over the years, Machine Learning models have been successfully employed on neuroimaging data for accurately predicting brain age. Deviations from the healthy brain aging pattern are associated to the accelerated brain aging and brain abnormalities. Hence, efficient and accurate diagnosis techniques are required for eliciting accurate brain age estimations. Several contributions have been reported in the past for this purpose, resorting to different data-driven modeling methods. Recently, deep neural networks (also referred to as deep learning) have become prevalent in manifold neuroimaging studies, including brain age estimation. In this review, we offer a comprehensive analysis of the literature related to the adoption of deep learning for brain age estimation with neuroimaging data. We detail and analyze different deep learning architectures used for this application, pausing at research works published to date quantitatively exploring their application. We also examine different brain age estimation frameworks, comparatively exposing their advantages and weaknesses. Finally, the review concludes with an outlook towards future directions that should be followed by prospective studies. The ultimate goal of this paper is to establish a common and informed reference for newcomers and experienced researchers willing to approach brain age estimation by using deep learning models
translated by 谷歌翻译
Clinical diagnostic and treatment decisions rely upon the integration of patient-specific data with clinical reasoning. Cancer presents a unique context that influence treatment decisions, given its diverse forms of disease evolution. Biomedical imaging allows noninvasive assessment of disease based on visual evaluations leading to better clinical outcome prediction and therapeutic planning. Early methods of brain cancer characterization predominantly relied upon statistical modeling of neuroimaging data. Driven by the breakthroughs in computer vision, deep learning became the de facto standard in the domain of medical imaging. Integrated statistical and deep learning methods have recently emerged as a new direction in the automation of the medical practice unifying multi-disciplinary knowledge in medicine, statistics, and artificial intelligence. In this study, we critically review major statistical and deep learning models and their applications in brain imaging research with a focus on MRI-based brain tumor segmentation. The results do highlight that model-driven classical statistics and data-driven deep learning is a potent combination for developing automated systems in clinical oncology.
translated by 谷歌翻译
组合多站点数据可以加强和揭示趋势,但是是由可以偏向数据的特定特定协变量的影响,因此任何下游分析都会受到任何可能的任务。 HOC后期多站点校正方法存在但具有强烈的假设,通常不会在现实世界中持有。算法应该以可以解释特定于站点的效果的方式设计,例如从序列参数选择中出现的那些,并且在泛型失败的情况下,应该能够通过明确的不确定性建模来识别这种失败。该工作正文展示了这种算法,这可以在分割任务的背景下对收购物理学变得强大,同时建模不确定性。我们展示我们的方法不仅概括为完全熔断数据集,保留了分割质量,但同时也会考虑特定于站点的序列选择,这也允许它作为统一工具执行。
translated by 谷歌翻译
在硅组织模型中,可以评估磁共振成像的定量模型。这包括对成像生物标志物和组织微结构参数的验证和灵敏度分析。我们提出了一种新的方法来生成心肌微结构的现实数值幻影。我们扩展了以前的研究,该研究考虑了心肌细胞的变异性,心肌细胞(插入式椎间盘)之间的水交换,心肌微结构混乱和四个钣金方向。在该方法的第一阶段,心肌细胞和钣金是通过考虑心肌到骨膜细胞连接的形状变异性和插入式椎间盘而产生的。然后,将薄板汇总和定向在感兴趣的方向上。我们的形态计量学研究表明,数值和真实(文献)心肌细胞数据的体积,长度以及一级和次要轴的分布之间没有显着差异($ p> 0.01 $)。结构相关性分析证实了硅内组织与实际组织的混乱类别相同。此外,心肌细胞的模拟螺旋角(HA)和输入HA(参考值)之间的绝对角度差($ 4.3^\ Circ \ PM 3.1^\ Circ $)与所测量HA之间的绝对角差有很好的一致性使用实验性心脏扩散张量成像(CDTI)和组织学(参考值)(Holmes等,2000)($ 3.7^\ Circ \ PM6.4^\ Circ $)和(Scollan等,1998)($ 4.9) ^\ circ \ pm 14.6^\ circ $)。使用结构张量成像(黄金标准)和实验性CDTI,输入和模拟CDTI的特征向量和模拟CDTI的角度之间的角度距离小于测量角度之间的角度距离。这些结果证实,所提出的方法比以前的研究可以为心肌产生更丰富的数值幻象。
translated by 谷歌翻译
主要的神经影像学研究推动了1.0 mm以下的3T MRI采集分辨率,以改善结构定义和形态学。然而,只有很少的时间 - 密集的自动化图像分析管道已被验证为高分辨率(雇用)设置。另一方面,有效的深度学习方法很少支持多个固定分辨率(通常1.0 mm)。此外,缺乏标准的杂交数据分辨率以及具有足够覆盖的扫描仪,年龄,疾病或遗传方差的多样化数据的有限可用性会带来额外的,未解决的挑战培训网络。将分辨率独立于基于深度学习的分割,即在一系列不同的体素大小上以其本地分辨率进行分辨率的能力,承诺克服这些挑战,但目前没有这种方法。我们现在通过向决议独立的分割任务(VINN)引入VINOSEIZED独立的神经网络(VINN)来填补这个差距,并呈现FastSurfervinn,(i)建立并实施决议独立,以获得深度学习作为同时支持0.7-1.0 mm的第一种方法分割,(ii)显着优于跨决议的最先进方法,(iii)减轻雇用数据集中存在的数据不平衡问题。总体而言,内部分辨率 - 独立性相互益处雇用和1.0 mm MRI分割。通过我们严格验证的FastSurfervinn,我们将为不同的神经视线镜分析分发一个快速工具。此外,VINN架构表示更广泛应用的有效分辨率的分段方法
translated by 谷歌翻译
从早期图像处理到现代计算成像,成功的模型和算法都依赖于自然信号的基本属性:对称性。在这里,对称是指信号集的不变性属性,例如翻译,旋转或缩放等转换。对称性也可以以模棱两可的形式纳入深度神经网络中,从而可以进行更多的数据效率学习。虽然近年来端到端的图像分类网络的设计方面取得了重要进展,但计算成像引入了对等效网络解决方案的独特挑战,因为我们通常只通过一些嘈杂的不良反向操作员观察图像,可能不是均等的。我们回顾了现象成像的新兴领域,并展示它如何提供改进的概括和新成像机会。在此过程中,我们展示了采集物理学与小组动作之间的相互作用,以及与迭代重建,盲目的压缩感应和自我监督学习之间的联系。
translated by 谷歌翻译