Atrial Fibrillation (AF) is characterized by disorganised electrical activity in the atria and is known to be sustained by the presence of regions of fibrosis (scars) or functional cellular remodeling, both of which may lead to areas of slow conduction. Estimating the effective conductivity of the myocardium and identifying regions of abnormal propagation is therefore crucial for the effective treatment of AF. We hypothesise that the spatial distribution of tissue conductivity can be directly inferred from an array of concurrently acquired contact electrograms (EGMs). We generate a dataset of simulated cardiac AP propagation using randomised scar distributions and a phenomenological cardiac model and calculate contact electrograms at various positions on the field. A deep neural network, based on a modified U-net architecture, is trained to estimate the location of the scar and quantify conductivity of the tissue with a Jaccard index of $91$%. We adapt a wavelet-based surrogate testing analysis to confirm that the inferred conductivity distribution is an accurate representation of the ground truth input to the model. We find that the root mean square error (RMSE) between the ground truth and our predictions is significantly smaller ($p_{val}=0.007$) than the RMSE between the ground truth and surrogate samples.
translated by 谷歌翻译
我们提出了Fibernet,一种估计\ emph {in-Vivo}的方法,从电动激活的多个导管记录中,人心房的心脏纤维结构。心脏纤维在心脏的电力功能中起着核心作用,但是它们很难确定体内,因此在现有心脏模型中很少有特定于患者的特定于患者。 Fibernet通过解决物理知识的神经网络的逆问题来学习纤维布置。逆问题等于从一组稀疏激活图中识别心脏传播模型的传导速度张量。多个地图的使用可以同时识别传导速度张量(包括局部纤维角)的所有组件。我们对合成2-D和3-D示例,扩散张量纤维和患者特异性病例进行广泛测试。我们表明,在存在噪声的情况下,也足以准确捕获纤维。随着地图的较少,正则化的作用变得突出。此外,我们表明拟合的模型可以稳健地重现看不见的激活图。我们设想,纤维网将帮助创建特定于患者的个性化医学模型。完整代码可在http://github.com/fsahli/fibernet上找到。
translated by 谷歌翻译
心室心动过速(VT)可能是全世界425万人心脏死亡的原因之一。治疗方法是导管消融,以使异常触发区域失活。为了促进和加快消融过程中的定位,我们提出了基于卷积神经网络(CNN)的两种新型定位技术。与现有方法相反,例如使用ECG成像,我们的方法被设计为独立于患者特异性的几何形状,直接适用于表面ECG信号,同时还提供了二元透射位置。一种方法输出排名的替代解决方案。可以在通用或患者的几何形状上可视化结果。对CNN进行了仅包含模拟数据的数据集培训,并在模拟和临床测试数据上进行了评估。在模拟数据上,中值测试误差低于3mm。临床数据上的中位定位误差低至32mm。在所有临床病例中,多达82%的透壁位置被正确检测到。使用排名的替代溶液,在临床数据上,前3个中值误差下降到20mm。这些结果证明了原理证明使用CNN来定位激活源,而无需固有的患者特定的几何信息。此外,提供多种解决方案可以帮助医生在多个可能的位置中找到实际激活源。通过进一步的优化,这些方法具有加快临床干预措施的高潜力。因此,他们可以降低程序风险并改善VT患者的结局。
translated by 谷歌翻译
Mechanistic cardiac electrophysiology models allow for personalized simulations of the electrical activity in the heart and the ensuing electrocardiogram (ECG) on the body surface. As such, synthetic signals possess known ground truth labels of the underlying disease and can be employed for validation of machine learning ECG analysis tools in addition to clinical signals. Recently, synthetic ECGs were used to enrich sparse clinical data or even replace them completely during training leading to improved performance on real-world clinical test data. We thus generated a novel synthetic database comprising a total of 16,900 12 lead ECGs based on electrophysiological simulations equally distributed into healthy control and 7 pathology classes. The pathological case of myocardial infraction had 6 sub-classes. A comparison of extracted features between the virtual cohort and a publicly available clinical ECG database demonstrated that the synthetic signals represent clinical ECGs for healthy and pathological subpopulations with high fidelity. The ECG database is split into training, validation, and test folds for development and objective assessment of novel machine learning algorithms.
translated by 谷歌翻译
心肌组织中电脉冲现象的分析对于心律节律疾病和其他心脏病生理学的诊断是重要的。心脏映射技术获取本地时间测量,并将它们与心脏表面相结合以可视化电生理波现象的传播。然而,低空间分辨率,稀疏测量位置,噪音和其他工件使得能够准确地可视化时空活动来挑战。例如,电解剖导管映射受测量的稀疏性严重限制,并且光学映射容易发生噪声和运动伪影。在过去,已经提出了几种方法来获得从嘈杂或稀疏映射数据的更可靠的地图。在这里,我们证明了深度学习可用于计算阶段地图和检测心室颤动的光学映射视频中的相位奇点,以及非常嘈杂,低分辨率和极其稀疏的旋流波混沌模拟导管映射数据的模拟数据。深度学习方法学习直接将相位映射和相奇异性的位置与短时空序列的电气数据序列联系起来。我们基于具有编码和解码结构的卷积神经网络测试了几种神经网络架构,以通过预测相位映射和相位奇异性的后续经典计算来预测直接或间接地预测相位映射或转子芯位置。可以跨不同数据执行预测,其中模型在一个物种上培训,然后成功应用于另一个物种,或者仅在模拟数据上培训,然后应用于实验数据。未来的用途可包括对基本心血管研究中的光学映射研究的分析,以及临床环境中心房颤动的映射。
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
已经提出了几十年来捕获胶质瘤的生长,最常见的原发性脑肿瘤的反应扩散模型。然而,关于估计这些模型的初始条件和参数值的严重局限性将其临床用作作为个性化工具。在这项工作中,我们调查了深度卷积神经网络(DCNN)来解决现场遇到的缺陷的能力。基于从磁共振(MR)数据的磁共振(MR)数据产生的1,200种合成肿瘤,我们证明了DCNN在单个时间点仅从两个成像轮廓重建整个肿瘤细胞密度分布的能力。通过在先前时间点提取额外的成像轮廓,我们还证明了DCNN准确估计模型的各个扩散性和增殖参数的能力。从这些知识来看,最终可以使用该模型精确地捕获稍后时间点处的肿瘤细胞密度分布的时空演变。我们终于展示了我们对真正的胶质母细胞瘤患者的先生数据的适用性。这种方法可以打开反应扩散生长模型的临床应用的视角,用于肿瘤预后和治疗计划。
translated by 谷歌翻译
电磁源成像(ESI)需要解决高度不良的反问题。为了寻求独特的解决方案,传统的ESI方法施加了各种形式的先验,这些方法可能无法准确反映实际的源属性,这可能会阻碍其广泛的应用。为了克服这一局限性,在本文中,提出了一种新的数据合成的时空卷积编码器网络方法,称为dst-cednet。 DST-CEDNET将ESI作为机器学习问题重新铸造,其中歧视性学习和潜在空间表示形式集成到卷积编码器decoder网络(CEDNET)中,以从测量的电脑摄影/磁脑摄影学(E/MEG)信号中学习强大的映射,大脑活动。特别是,通过纳入有关动态大脑活动的先验知识,设计了一种新型的数据合成策略来生成大规模样本,以有效训练Cednet。这与传统的ESI方法相反,在传统的ESI方法中,通常通过主要旨在用于数学便利的约束来实施先前的信息。广泛的数值实验以及对真实MEG和癫痫脑电图数据集的分析表明,DST-Cednet在多种源配置下稳健估计源信号的多种最新ESI方法的表现。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
Machine learning-based modeling of physical systems has experienced increased interest in recent years. Despite some impressive progress, there is still a lack of benchmarks for Scientific ML that are easy to use but still challenging and representative of a wide range of problems. We introduce PDEBench, a benchmark suite of time-dependent simulation tasks based on Partial Differential Equations (PDEs). PDEBench comprises both code and data to benchmark the performance of novel machine learning models against both classical numerical simulations and machine learning baselines. Our proposed set of benchmark problems contribute the following unique features: (1) A much wider range of PDEs compared to existing benchmarks, ranging from relatively common examples to more realistic and difficult problems; (2) much larger ready-to-use datasets compared to prior work, comprising multiple simulation runs across a larger number of initial and boundary conditions and PDE parameters; (3) more extensible source codes with user-friendly APIs for data generation and baseline results with popular machine learning models (FNO, U-Net, PINN, Gradient-Based Inverse Method). PDEBench allows researchers to extend the benchmark freely for their own purposes using a standardized API and to compare the performance of new models to existing baseline methods. We also propose new evaluation metrics with the aim to provide a more holistic understanding of learning methods in the context of Scientific ML. With those metrics we identify tasks which are challenging for recent ML methods and propose these tasks as future challenges for the community. The code is available at https://github.com/pdebench/PDEBench.
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
心房颤动的计算模型已成功地用于预测最佳消融部位。评估消融模式的效果的关键步骤是从不同,潜在的随机的位置加速模型以确定是否可以在ATRIA中诱导心律失常。在这项工作中,我们建议使用黎曼歧管的多保真高斯过程分类,以有效地确定心律失常是诱导性诱导的区域内的区域。我们构建一个直接在心房表面上运行的概率分类器。我们利用较低的分辨率模型来探索心房表面,并与高分辨率模型无缝结合,以识别诱导区域。当用40个样本培训时,我们的多保真性分级器显示了比使用作为基线心房颤动模型的最近邻分类器的均衡精度,并且在心房颤动的情况下具有9%。我们希望这种新技术将允许更快,更精确地对心房颤动的计算模型临床应用。
translated by 谷歌翻译
在硅组织模型中,可以评估磁共振成像的定量模型。这包括对成像生物标志物和组织微结构参数的验证和灵敏度分析。我们提出了一种新的方法来生成心肌微结构的现实数值幻影。我们扩展了以前的研究,该研究考虑了心肌细胞的变异性,心肌细胞(插入式椎间盘)之间的水交换,心肌微结构混乱和四个钣金方向。在该方法的第一阶段,心肌细胞和钣金是通过考虑心肌到骨膜细胞连接的形状变异性和插入式椎间盘而产生的。然后,将薄板汇总和定向在感兴趣的方向上。我们的形态计量学研究表明,数值和真实(文献)心肌细胞数据的体积,长度以及一级和次要轴的分布之间没有显着差异($ p> 0.01 $)。结构相关性分析证实了硅内组织与实际组织的混乱类别相同。此外,心肌细胞的模拟螺旋角(HA)和输入HA(参考值)之间的绝对角度差($ 4.3^\ Circ \ PM 3.1^\ Circ $)与所测量HA之间的绝对角差有很好的一致性使用实验性心脏扩散张量成像(CDTI)和组织学(参考值)(Holmes等,2000)($ 3.7^\ Circ \ PM6.4^\ Circ $)和(Scollan等,1998)($ 4.9) ^\ circ \ pm 14.6^\ circ $)。使用结构张量成像(黄金标准)和实验性CDTI,输入和模拟CDTI的特征向量和模拟CDTI的角度之间的角度距离小于测量角度之间的角度距离。这些结果证实,所提出的方法比以前的研究可以为心肌产生更丰富的数值幻象。
translated by 谷歌翻译
地面穿透雷达(GPR)已被用作树根检验的非破坏性工具。从GPR Radargrams估算从GPR Radargrams的与根系相关的参数都促进了根系健康监测和成像。然而,随着根反射是多根参数和根方向的复杂函数,估计根相关参数的任务是具有挑战性的。现有方法只能在不考虑其他参数和根取向的影响的时间内估计单根参数,导致不同根状况下的估计精度有限。此外,土壤异质性在GPR雷达格中引入了杂波,使数据处理和解释甚至更难。为了解决这些问题,提出了一种名为掩模引导的多偏振积分神经网络(MMI-Net)的新型神经网络架构,以自动估计异构土壤环境中的多个与多种根相关参数。 MMI-Net包括两个子网络:一个掩码,用于预测掩模以突出显示根反射区域以消除干扰环境杂波,以及使用预测掩码的Paranet作为集成,提取,并强调多个中的信息特征的指导Polariemetric radargrams,用于精确估计五个关键的根系相关参数。参数包括根深度,直径,相对介电常数,水平和垂直方向角。实验结果表明,所提出的MMI-Net在这些与相关参数中实现了高估计精度。这是第一项工作,它考虑了根参数和空间方向的组合贡献,并同时估计多个与多个与根相关的参数。本文中实现的数据和代码可以在https://haihan-sun.github.io/gpr.html中找到。
translated by 谷歌翻译
基于签名的技术使数学洞察力洞悉不断发展的数据的复杂流之间的相互作用。这些见解可以自然地转化为理解流数据的数值方法,也许是由于它们的数学精度,已被证明在数据不规则而不是固定的情况下分析流的数据以及数据和数据的尺寸很有用样本量均为中等。了解流的多模式数据是指数的:$ d $ d $的字母中的$ n $字母中的一个单词可以是$ d^n $消息之一。签名消除了通过采样不规则性引起的指数级噪声,但仍然存在指数量的信息。这项调查旨在留在可以直接管理指数缩放的域中。在许多问题中,可伸缩性问题是一个重要的挑战,但需要另一篇调查文章和进一步的想法。这项调查描述了一系列环境集足够小以消除大规模机器学习的可能性,并且可以有效地使用一小部分免费上下文和原则性功能。工具的数学性质可以使他们对非数学家的使用恐吓。本文中介绍的示例旨在弥合此通信差距,并提供从机器学习环境中绘制的可进行的工作示例。笔记本可以在线提供这些示例中的一些。这项调查是基于伊利亚·雪佛兰(Ilya Chevryev)和安德烈·科米利津(Andrey Kormilitzin)的早期论文,它们在这种机械开发的较早时刻大致相似。本文说明了签名提供的理论见解是如何在对应用程序数据的分析中简单地实现的,这种方式在很大程度上对数据类型不可知。
translated by 谷歌翻译
在本文中,我们根据卷积神经网络训练湍流模型。这些学到的湍流模型改善了在模拟时为不可压缩的Navier-Stokes方程的溶解不足的低分辨率解。我们的研究涉及开发可区分的数值求解器,该求解器通过多个求解器步骤支持优化梯度的传播。这些属性的重要性是通过那些模型的出色稳定性和准确性来证明的,这些模型在训练过程中展开了更多求解器步骤。此外,我们基于湍流物理学引入损失项,以进一步提高模型的准确性。这种方法应用于三个二维的湍流场景,一种均匀的腐烂湍流案例,一个暂时进化的混合层和空间不断发展的混合层。与无模型模拟相比,我们的模型在长期A-posterii统计数据方面取得了重大改进,而无需将这些统计数据直接包含在学习目标中。在推论时,我们提出的方法还获得了相似准确的纯粹数值方法的实质性改进。
translated by 谷歌翻译
低成本毫米波(MMWAVE)通信和雷达设备的商业可用性开始提高消费市场中这种技术的渗透,为第五代(5G)的大规模和致密的部署铺平了道路(5G) - 而且以及6G网络。同时,普遍存在MMWAVE访问将使设备定位和无设备的感测,以前所未有的精度,特别是对于Sub-6 GHz商业级设备。本文使用MMWAVE通信和雷达设备在基于设备的定位和无设备感应中进行了现有技术的调查,重点是室内部署。我们首先概述关于MMWAVE信号传播和系统设计的关键概念。然后,我们提供了MMWaves启用的本地化和感应方法和算法的详细说明。我们考虑了在我们的分析中的几个方面,包括每个工作的主要目标,技术和性能,每个研究是否达到了一定程度的实现,并且该硬件平台用于此目的。我们通过讨论消费者级设备的更好算法,密集部署的数据融合方法以及机器学习方法的受过教育应用是有前途,相关和及时的研究方向的结论。
translated by 谷歌翻译
敏感性张量成像(STI)是一种新兴的磁共振成像技术,它以二阶张量模型来表征各向异性组织磁敏感性。 STI有可能为白质纤维途径的重建以及在MM分辨率下的大脑中的髓磷脂变化的检测提供信息,这对于理解健康和患病大脑的大脑结构和功能具有很大的价值。但是,STI在体内的应用受到了繁琐且耗时的采集要求,以测量易感性引起的MR相变为多个(通常超过六个)的头部方向。由于头圈的物理限制,头部旋转角的限制增强了这种复杂性。结果,STI尚未广泛应用于体内研究。在这项工作中,我们通过为STI的图像重建算法提出利用数据驱动的先验来解决这些问题。我们的方法称为DEEPSTI,通过深层神经网络隐式地了解了数据,该网络近似于STI的正常器函数的近端操作员。然后,使用学习的近端网络对偶极反转问题进行迭代解决。使用模拟和体内人类数据的实验结果表明,根据重建张量图,主要特征向量图和拖拉术结果,对最先进的算法的改进很大六个不同的方向。值得注意的是,我们的方法仅在人体内的一个方向上实现了有希望的重建结果,我们证明了该技术在估计多发性硬化症患者中估计病变易感性各向异性的潜在应用。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译