深度学习有很多兴趣解决了在现实世界环境中应用神经网络模型的挑战。特别是,三个领域得到了相当大的关注:对抗性鲁棒性,参数稀疏性和输出稳定性。尽管有许多独立解决这些问题的尝试,但很少有效地解决了挑战。在本文中,我们通过提出组合解决这些问题的新型制定来解决构建整体深层学习模型的这个问题。关于表格和MNIST数据集的现实世界实验表明,我们的配方能够同时提高传统深度学习模型的准确性,鲁棒性,稳定性和稀疏性。
translated by 谷歌翻译
许多最先进的对抗性培训方法利用对抗性损失的上限来提供安全保障。然而,这些方法需要在每个训练步骤中计算,该步骤不能包含在梯度中的梯度以进行反向化。我们基于封闭形式的对抗性损失的封闭溶液引入了一种新的更具内容性的对抗性培训,可以有效地培养了背部衰退。通过稳健优化的最先进的工具促进了这一界限。我们使用我们的方法推出了两种新方法。第一种方法(近似稳健的上限或arub)使用网络的第一阶近似以及来自线性鲁棒优化的基本工具,以获得可以容易地实现的对抗丢失的近似偏置。第二种方法(鲁棒上限或摩擦)计算对抗性损失的精确上限。在各种表格和视觉数据集中,我们展示了我们更加原则的方法的有效性 - 摩擦比最先进的方法更强大,而是较大的扰动的最新方法,而谷会匹配的性能 - 小扰动的艺术方法。此外,摩擦和灌注速度比标准对抗性培训快(以牺牲内存增加)。重现结果的所有代码都可以在https://github.com/kimvc7/trobustness找到。
translated by 谷歌翻译
人工神经网络(ANN)训练景观的非凸起带来了固有的优化困难。虽然传统的背传播随机梯度下降(SGD)算法及其变体在某些情况下是有效的,但它们可以陷入杂散的局部最小值,并且对初始化和普通公共表敏感。最近的工作表明,随着Relu激活的ANN的培训可以重新重整为凸面计划,使希望能够全局优化可解释的ANN。然而,天真地解决凸训练制剂具有指数复杂性,甚至近似启发式需要立方时间。在这项工作中,我们描述了这种近似的质量,并开发了两个有效的算法,这些算法通过全球收敛保证培训。第一算法基于乘法器(ADMM)的交替方向方法。它解决了精确的凸形配方和近似对应物。实现线性全局收敛,并且初始几次迭代通常会产生具有高预测精度的解决方案。求解近似配方时,每次迭代时间复杂度是二次的。基于“采样凸面”理论的第二种算法更简单地实现。它解决了不受约束的凸形制剂,并收敛到大约全球最佳的分类器。当考虑对抗性培训时,ANN训练景观的非凸起加剧了。我们将稳健的凸优化理论应用于凸训练,开发凸起的凸起制剂,培训Anns对抗对抗投入。我们的分析明确地关注一个隐藏层完全连接的ANN,但可以扩展到更复杂的体系结构。
translated by 谷歌翻译
在本讨论文件中,我们调查了有关机器学习模型鲁棒性的最新研究。随着学习算法在数据驱动的控制系统中越来越流行,必须确保它们对数据不确定性的稳健性,以维持可靠的安全至关重要的操作。我们首先回顾了这种鲁棒性的共同形式主义,然后继续讨论训练健壮的机器学习模型的流行和最新技术,以及可证明这种鲁棒性的方法。从强大的机器学习的这种统一中,我们识别并讨论了该地区未来研究的迫切方向。
translated by 谷歌翻译
尽管机器学习系统的效率和可扩展性,但最近的研究表明,许多分类方法,尤其是深神经网络(DNN),易受对抗的例子;即,仔细制作欺骗训练有素的分类模型的例子,同时无法区分从自然数据到人类。这使得在安全关键区域中应用DNN或相关方法可能不安全。由于这个问题是由Biggio等人确定的。 (2013)和Szegedy等人。(2014年),在这一领域已经完成了很多工作,包括开发攻击方法,以产生对抗的例子和防御技术的构建防范这些例子。本文旨在向统计界介绍这一主题及其最新发展,主要关注对抗性示例的产生和保护。在数值实验中使用的计算代码(在Python和R)公开可用于读者探讨调查的方法。本文希望提交人们将鼓励更多统计学人员在这种重要的令人兴奋的领域的产生和捍卫对抗的例子。
translated by 谷歌翻译
Explainability has been widely stated as a cornerstone of the responsible and trustworthy use of machine learning models. With the ubiquitous use of Deep Neural Network (DNN) models expanding to risk-sensitive and safety-critical domains, many methods have been proposed to explain the decisions of these models. Recent years have also seen concerted efforts that have shown how such explanations can be distorted (attacked) by minor input perturbations. While there have been many surveys that review explainability methods themselves, there has been no effort hitherto to assimilate the different methods and metrics proposed to study the robustness of explanations of DNN models. In this work, we present a comprehensive survey of methods that study, understand, attack, and defend explanations of DNN models. We also present a detailed review of different metrics used to evaluate explanation methods, as well as describe attributional attack and defense methods. We conclude with lessons and take-aways for the community towards ensuring robust explanations of DNN model predictions.
translated by 谷歌翻译
We propose a method to learn deep ReLU-based classifiers that are provably robust against normbounded adversarial perturbations on the training data. For previously unseen examples, the approach is guaranteed to detect all adversarial examples, though it may flag some non-adversarial examples as well. The basic idea is to consider a convex outer approximation of the set of activations reachable through a norm-bounded perturbation, and we develop a robust optimization procedure that minimizes the worst case loss over this outer region (via a linear program). Crucially, we show that the dual problem to this linear program can be represented itself as a deep network similar to the backpropagation network, leading to very efficient optimization approaches that produce guaranteed bounds on the robust loss. The end result is that by executing a few more forward and backward passes through a slightly modified version of the original network (though possibly with much larger batch sizes), we can learn a classifier that is provably robust to any norm-bounded adversarial attack. We illustrate the approach on a number of tasks to train classifiers with robust adversarial guarantees (e.g. for MNIST, we produce a convolutional classifier that provably has less than 5.8% test error for any adversarial attack with bounded ∞ norm less than = 0.1), and code for all experiments is available at http://github.com/ locuslab/convex_adversarial.
translated by 谷歌翻译
成本敏感的分类对于错误分类错误的成本差异很大,至关重要。但是,过度参数化对深神经网络(DNNS)的成本敏感建模构成了基本挑战。 DNN完全插值训练数据集的能力可以渲染DNN,纯粹在训练集上进行评估,无效地区分了成本敏感的解决方案和其总体准确性最大化。这需要重新思考DNN中的成本敏感分类。为了应对这一挑战,本文提出了一个具有成本敏感的对抗数据增强(CSADA)框架,以使过度参数化的模型成本敏感。总体想法是生成针对性的对抗示例,以推动成本感知方向的决策边界。这些有针对性的对抗样本是通过最大化关键分类错误的可能性而产生的,并用于训练一个模型,以更加保守的对成对的决策。公开可用的有关著名数据集和药物药物图像(PMI)数据集的实验表明,我们的方法可以有效地最大程度地减少整体成本并减少关键错误,同时在整体准确性方面达到可比的性能。
translated by 谷歌翻译
有必要提高某些特殊班级的表现,或者特别保护它们免受对抗学习的攻击。本文提出了一个将成本敏感分类和对抗性学习结合在一起的框架,以训练可以区分受保护和未受保护的类的模型,以使受保护的类别不太容易受到对抗性示例的影响。在此框架中,我们发现在训练深神经网络(称为Min-Max属性)期间,一个有趣的现象,即卷积层中大多数参数的绝对值。基于这种最小的最大属性,该属性是在随机分布的角度制定和分析的,我们进一步建立了一个针对对抗性示例的新防御模型,以改善对抗性鲁棒性。构建模型的一个优点是,它的性能比标准模型更好,并且可以与对抗性训练相结合,以提高性能。在实验上证实,对于所有类别的平均准确性,我们的模型在没有发生攻击时几乎与现有模型一样,并且在发生攻击时比现有模型更好。具体而言,关于受保护类的准确性,提议的模型比发生攻击时的现有模型要好得多。
translated by 谷歌翻译
训练有素的神经网络的性能至关重要。加上深度学习模型的不断增长的规模,这种观察激发了对学习稀疏模型的广泛研究。在这项工作中,我们专注于控制稀疏学习时的稀疏水平的任务。基于稀疏性惩罚的现有方法涉及对罚款因素的昂贵反复试验调整,因此缺乏直接控制所得模型的稀疏性。作为响应,我们采用了一个约束的公式:使用Louizos等人提出的栅极机制。 (2018年),我们制定了一个受约束的优化问题,其中稀疏以训练目标和所需的稀疏目标以端到端的方式指导。使用WIDERESNET和RESNET {18,50}模型进行了CIFAR-10/100,Tinyimagenet和ImageNet的实验验证了我们的提案的有效性,并证明我们可以可靠地实现预定的稀疏目标,而不会损害预测性能。
translated by 谷歌翻译
We propose a simultaneous learning and pruning algorithm capable of identifying and eliminating irrelevant structures in a neural network during the early stages of training. Thus, the computational cost of subsequent training iterations, besides that of inference, is considerably reduced. Our method, based on variational inference principles using Gaussian scale mixture priors on neural network weights, learns the variational posterior distribution of Bernoulli random variables multiplying the units/filters similarly to adaptive dropout. Our algorithm, ensures that the Bernoulli parameters practically converge to either 0 or 1, establishing a deterministic final network. We analytically derive a novel hyper-prior distribution over the prior parameters that is crucial for their optimal selection and leads to consistent pruning levels and prediction accuracy regardless of weight initialization or the size of the starting network. We prove the convergence properties of our algorithm establishing theoretical and practical pruning conditions. We evaluate the proposed algorithm on the MNIST and CIFAR-10 data sets and the commonly used fully connected and convolutional LeNet and VGG16 architectures. The simulations show that our method achieves pruning levels on par with state-of the-art methods for structured pruning, while maintaining better test-accuracy and more importantly in a manner robust with respect to network initialization and initial size.
translated by 谷歌翻译
Deep learning algorithms have been shown to perform extremely well on many classical machine learning problems. However, recent studies have shown that deep learning, like other machine learning techniques, is vulnerable to adversarial samples: inputs crafted to force a deep neural network (DNN) to provide adversary-selected outputs. Such attacks can seriously undermine the security of the system supported by the DNN, sometimes with devastating consequences. For example, autonomous vehicles can be crashed, illicit or illegal content can bypass content filters, or biometric authentication systems can be manipulated to allow improper access. In this work, we introduce a defensive mechanism called defensive distillation to reduce the effectiveness of adversarial samples on DNNs. We analytically investigate the generalizability and robustness properties granted by the use of defensive distillation when training DNNs. We also empirically study the effectiveness of our defense mechanisms on two DNNs placed in adversarial settings. The study shows that defensive distillation can reduce effectiveness of sample creation from 95% to less than 0.5% on a studied DNN. Such dramatic gains can be explained by the fact that distillation leads gradients used in adversarial sample creation to be reduced by a factor of 10 30 . We also find that distillation increases the average minimum number of features that need to be modified to create adversarial samples by about 800% on one of the DNNs we tested.
translated by 谷歌翻译
Neural networks provide state-of-the-art results for most machine learning tasks. Unfortunately, neural networks are vulnerable to adversarial examples: given an input x and any target classification t, it is possible to find a new input x that is similar to x but classified as t. This makes it difficult to apply neural networks in security-critical areas. Defensive distillation is a recently proposed approach that can take an arbitrary neural network, and increase its robustness, reducing the success rate of current attacks' ability to find adversarial examples from 95% to 0.5%.In this paper, we demonstrate that defensive distillation does not significantly increase the robustness of neural networks by introducing three new attack algorithms that are successful on both distilled and undistilled neural networks with 100% probability. Our attacks are tailored to three distance metrics used previously in the literature, and when compared to previous adversarial example generation algorithms, our attacks are often much more effective (and never worse). Furthermore, we propose using high-confidence adversarial examples in a simple transferability test we show can also be used to break defensive distillation. We hope our attacks will be used as a benchmark in future defense attempts to create neural networks that resist adversarial examples.
translated by 谷歌翻译
Recent work has demonstrated that deep neural networks are vulnerable to adversarial examples-inputs that are almost indistinguishable from natural data and yet classified incorrectly by the network. In fact, some of the latest findings suggest that the existence of adversarial attacks may be an inherent weakness of deep learning models. To address this problem, we study the adversarial robustness of neural networks through the lens of robust optimization. This approach provides us with a broad and unifying view on much of the prior work on this topic. Its principled nature also enables us to identify methods for both training and attacking neural networks that are reliable and, in a certain sense, universal. In particular, they specify a concrete security guarantee that would protect against any adversary. These methods let us train networks with significantly improved resistance to a wide range of adversarial attacks. They also suggest the notion of security against a first-order adversary as a natural and broad security guarantee. We believe that robustness against such well-defined classes of adversaries is an important stepping stone towards fully resistant deep learning models. 1
translated by 谷歌翻译
Recent works on Lottery Ticket Hypothesis have shown that pre-trained language models (PLMs) contain smaller matching subnetworks(winning tickets) which are capable of reaching accuracy comparable to the original models. However, these tickets are proved to be notrobust to adversarial examples, and even worse than their PLM counterparts. To address this problem, we propose a novel method based on learning binary weight masks to identify robust tickets hidden in the original PLMs. Since the loss is not differentiable for the binary mask, we assign the hard concrete distribution to the masks and encourage their sparsity using a smoothing approximation of L0 regularization.Furthermore, we design an adversarial loss objective to guide the search for robust tickets and ensure that the tickets perform well bothin accuracy and robustness. Experimental results show the significant improvement of the proposed method over previous work on adversarial robustness evaluation.
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
对抗性的鲁棒性已成为机器学习越来越兴趣的话题,因为观察到神经网络往往会变得脆弱。我们提出了对逆转防御的信息几何表述,并引入Fire,这是一种针对分类跨透明镜损失的新的Fisher-Rao正则化,这基于对应于自然和受扰动输入特征的软磁输出之间的测量距离。基于SoftMax分布类的信息几何特性,我们为二进制和多类案例提供了Fisher-Rao距离(FRD)的明确表征,并绘制了一些有趣的属性以及与标准正则化指标的连接。此外,对于一个简单的线性和高斯模型,我们表明,在精度 - 舒适性区域中的所有帕累托最佳点都可以通过火力达到,而其他最先进的方法则可以通过火灾。从经验上讲,我们评估了经过标准数据集拟议损失的各种分类器的性能,在清洁和健壮的表现方面同时提高了1 \%的改进,同时将培训时间降低了20 \%,而不是表现最好的方法。
translated by 谷歌翻译
机器学习的许多成功都是基于最大程度地减少平均损失函数的基础。但是,众所周知,这种范式遭受了鲁棒性问题的影响,阻碍了其在安全 - 关键领域中的适用性。这些问题通常是通过针对最坏情况的数据扰动来解决的,该技术被称为对抗性训练。尽管经验上有效,但对抗性训练可能过于保守,从而导致名义性能和稳健性之间的不利权衡。为此,在本文中,我们提出了一个称为概率鲁棒性的框架,该框架弥合了准确但脆弱的平均情况和坚固而保守的最坏情况之间的差距,这是通过对最多而不是对所有扰动的实施强大的。从理论的角度来看,该框架克服了最差案例学习和平均案例学习的性能与样本复杂性之间的权衡。从实际的角度来看,我们提出了一种基于风险感知优化的新算法,该算法有效地平衡了平均和最差的案例性能,而相对于对抗性训练,计算成本较低。我们对MNIST,CIFAR-10和SVHN的结果说明了该框架在从平均值到最差的鲁棒性方面的优势。
translated by 谷歌翻译
Learning monotonic models with respect to a subset of the inputs is a desirable feature to effectively address the fairness, interpretability, and generalization issues in practice. Existing methods for learning monotonic neural networks either require specifically designed model structures to ensure monotonicity, which can be too restrictive/complicated, or enforce monotonicity by adjusting the learning process, which cannot provably guarantee the learned model is monotonic on selected features. In this work, we propose to certify the monotonicity of the general piece-wise linear neural networks by solving a mixed integer linear programming problem.This provides a new general approach for learning monotonic neural networks with arbitrary model structures. Our method allows us to train neural networks with heuristic monotonicity regularizations, and we can gradually increase the regularization magnitude until the learned network is certified monotonic. Compared to prior works, our approach does not require human-designed constraints on the weight space and also yields more accurate approximation. Empirical studies on various datasets demonstrate the efficiency of our approach over the state-of-the-art methods, such as Deep Lattice Networks.
translated by 谷歌翻译
超参数优化构成了典型的现代机器学习工作流程的很大一部分。这是由于这样一个事实,即机器学习方法和相应的预处理步骤通常只有在正确调整超参数时就会产生最佳性能。但是在许多应用中,我们不仅有兴趣仅仅为了预测精度而优化ML管道;确定最佳配置时,必须考虑其他指标或约束,从而导致多目标优化问题。由于缺乏知识和用于多目标超参数优化的知识和容易获得的软件实现,因此通常在实践中被忽略。在这项工作中,我们向读者介绍了多个客观超参数优化的基础知识,并激励其在应用ML中的实用性。此外,我们从进化算法和贝叶斯优化的领域提供了现有优化策略的广泛调查。我们说明了MOO在几个特定ML应用中的实用性,考虑了诸如操作条件,预测时间,稀疏,公平,可解释性和鲁棒性之类的目标。
translated by 谷歌翻译